

Lecture Notes in Computer Science 4839

Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler

University of Surrey, Guildford, UK

Jon M. Kleinberg

Cornell University, Ithaca, NY, USA

Friedemann Mattern

ETH Zurich, Switzerland

John C. Mitchell

Stanford University, CA, USA

Moni Naor

Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz

University of Bern, Switzerland

C. Pandu Rangan

Indian Institute of Technology, Madras, India

Bernhard Steffen

University of Dortmund, Germany

Madhu Sudan

Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos

University of California, Los Angeles, CA, USA

Doug Tygar

University of California, Berkeley, CA, USA

Moshe Y. Vardi

Rice University, Houston, TX, USA

Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

Oleg Sokolsky Serdar Taşıran (Eds.)

Runtime
Verification

7th International Workshop, RV 2007

Vancover, Canada, March 13, 2007

Revised Selected Papers

13

Volume Editors

Oleg Sokolsky
University of Pennsylvania
Department of Computer and Information Science
3330 Walnut Street, Philadelphia, PA, USA
E-mail: sokolsky@cis.upenn.edu

Serdar Taşıran
Koç University
College of Engineering
Rumeli Feneri Yolu, Sariyer, 34450, Istanbul, Turkey
E-mail: stasiran@ku.edu.tr

Library of Congress Control Number: 2007941510

CR Subject Classification (1998): D.2, D.3, F.3, K.6

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743

ISBN-10 3-540-77394-0 Springer Berlin Heidelberg New York

ISBN-13 978-3-540-77394-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12208111 06/3180 5 4 3 2 1 0

Preface

Runtime verification is a recent direction in formal methods research, which is
complementary to such well-established formal verification methods as model
checking. Research in runtime verification deals with formal languages suitable
for expressing system properties that are checkable at run time; algorithms for
checking of formal properties over an execution trace; low-overhead means of
extracting information from the running system that is sufficient for checking
of the property. Applications of runtime verification technology include post-
deployment monitoring of system correctness and performance; construction of
formally specified test oracles; collection of statistics about system behavior,
among others.

The Workshop on Runtime Verification was started in 2001 and has been
held annually since then. The workshop was co-located with the Conference on
Computer-Aided Verification (CAV) in 2001–2003 and 2005–2006; and with the
European Joint Conferences on Theory and Practice of Software (ETAPS) in
2004. In 2007, the workshop was held on March 13, 2007 in Vancouver, British
Columbia, Canada, co-located to the Conference on Aspect-Oriented Software
Development (AOSD) in order to explore the emerging connections between the
two communities.

RV 2007 attracted contributions from the core area of runtime verification,
as well as related research areas such as testing, static and dynamic analysis of
programs, and aspect-oriented programming. The Program Committee selected
16 out of 29 submissions. Each submitted paper was reviewed by at least three
Program Committee members. Submitted papers were supplemented by an in-
vited talk given by Cindy Eisner (IBM Research Haifa). This volume contains
expanded versions of the presentations made at the workshop. The expanded
versions were again reviewed by the Program Committee.

September 2007 Oleg Sokolsky
Serdar Tasiran

Conference Organization

Program Committee

Mehmet Aksit, University of Twente, The Netherlands
Howard Barringer, University of Manchester, UK
Saddek Bensalem, VERIMAG Laboratory, France
Eric Bodden, McGill Univeristy, Canada
Bernd Finkbeiner, Saarland University, Germany
Cormac Flanagan, University of California, Santa Cruz, USA
Vijay Garg, University of Texas, Austin, USA
Klaus Havelund, NASA Jet Propulsion Laboratory/Columbus Technologies, USA
Gerard Holzmann, NASA Jet Propulsion Laboratory, USA
Moonzoo Kim, KAIST, Korea
Martin Leucker, Technical University of Munich, Germany
Oege de Moor, Oxford University, UK
Klaus Ostermann, Darmstadt University of Technology, Germany
Shaz Qadeer, Microsoft Research
Grigore Rosu, University of Illinois, Urbana-Champaign, USA
Henny Sipma, Stanford University, USA
Oleg Sokolsky (Co-chair), University of Pennsylvania, USA
Scott Stoller, State University of New York, Stony Brook, USA
Mario Südholt, Ecole des Mines de Nantes-INRIA, France
Serdar Tasiran (Co-chair), Koc University, Turkey

Steering Committee

Klaus Havelund, NASA Jet Propulsion Laboratory, USA
Gerard Holzmann, NASA Jet Propulsion Laboratory, USA
Insup Lee, University of Pennsylvania, USA
Grigore Rosu, University of Illinois, Urbana-Champaign, USA

External Reviewers

Andreas Bauer
Selma Ikiz
David Rydeheard
Christian Schallhart

Table of Contents

Invited Paper

PSL for Runtime Verification: Theory and Practice 1
Cindy Eisner

AOP-Related Papers

On the Semantics of Matching Trace Monitoring Patterns 9
Pavel Avgustinov, Julian Tibble, and Oege de Moor

Collaborative Runtime Verification with Tracematches 22
Eric Bodden, Laurie Hendren, Patrick Lam, Ondřej Lhoták, and
Nomair A. Naeem

Static and Dynamic Detection of Behavioral Conflicts Between
Aspects . 38

Pascal Durr, Lodewijk Bergmans, and Mehmet Aksit

Escaping with Future Variables in HALO . 51
Charlotte Herzeel, Kris Gybels, and Pascal Costanza

Runtime Verification of Interactions: From MSCs to Aspects 63
Ingolf H. Krüger, Michael Meisinger, and Massimiliano Menarini

Towards a Tool for Generating Aspects from MEDL and PEDL
Specifications for Runtime Verification . 75

Omar Ochoa, Irbis Gallegos, Steve Roach, and Ann Gates

ARVE: Aspect-Oriented Runtime Verification Environment 87
Hiromasa Shin, Yusuke Endoh, and Yoshio Kataoka

Core Runtime Verification Papers

From Runtime Verification to Evolvable Systems . 97
Howard Barringer, Dov Gabbay, and David Rydeheard

Rule Systems for Run-Time Monitoring: From Eagle to RuleR 111
Howard Barringer, David Rydeheard, and Klaus Havelund

The Good, the Bad, and the Ugly, But How Ugly Is Ugly? 126
Andreas Bauer, Martin Leucker, and Christian Schallhart

Translation Validation of System Abstractions . 139
Jan Olaf Blech, Ina Schaefer, and Arnd Poetzsch-Heffter

VIII Table of Contents

Instrumentation of Open-Source Software for Intrusion Detection 151
William Mahoney and William Sousan

Statistical Runtime Checking of Probabilistic Properties 164
Usa Sammapun, Insup Lee, Oleg Sokolsky, and John Regehr

Temporal Assertions with Parametrised Propositions 176
Volker Stolz

Rollback Atomicity . 188
Serdar Tasiran and Tayfun Elmas

Runtime Checking for Program Verification . 202
Karen Zee, Viktor Kuncak, Michael Taylor, and Martin Rinard

Author Index . 215

PSL for Runtime Verification:

Theory and Practice

Cindy Eisner

IBM Haifa Research Laboratory
eisner@il.ibm.com

Abstract. PSL is a property specification language recently standard-
ized as IEEE 1850TM-2005 PSL. It includes as its temporal layer a linear
temporal logic that enhances LTL with regular expressions and other use-
ful features. PSL and its precursor, Sugar, have been used by the IBM
Haifa Research Laboratory for formal verification of hardware since 1993,
and for informal (dynamic, simulation runtime) verification of hardware
since 1997. More recently both Sugar and PSL have been used for for-
mal, dynamic, and runtime verification of software. In this paper I will
introduce PSL and briefly touch on theoretical and practical issues in
the use of PSL for dynamic and runtime verification.

1 Introduction

PSL stands for Property Specification Language. Its temporal layer is a linear
temporal logic that enhances LTL [19] with regular expressions and other useful
features. PSL originated as the branching temporal logic Sugar at the IBM Haifa
Research Laboratory, and in October 2005 was standardized as IEEE 1850-2005
(PSL).

PSL has four layers: the Boolean, the modeling, the temporal, and the ver-
ification layers. The Boolean layer is used to define Boolean expressions. For
instance, a & b is a Boolean expression (in the Verilog flavor) indicating the
conjunction of a and b. The Boolean layer comes in five flavors, corresponding
to the hardware description languages VHDL, Verilog, SystemVerilog and Sys-
temC and to GDL, the language of IBM’s RuleBase model checker. Although
other flavors are not yet an official part of the language, it is very easy to define
new ones. See, for instance, [7], which describes a C flavor of PSL.

The flavor affects the syntax of the modeling layer as well, which is used to
describe the environment of the design under test. For instance, constraints on
the inputs would be described in the modeling layer. The modeling layer can also
be used to describe auxiliary signals (in software: variables) that are not part of
the design, but are used as part of the verification. For example, the modeling
layer statement assign a = b & c; lets the signal name a be used in place of
the Boolean expression b & c.

The temporal layer is the heart of the language, and consists of an LTL-based
temporal logic incorporating regular expressions. A formula over this temporal

O. Sokolsky and S. Tasiran (Eds.): RV 2007, LNCS 4839, pp. 1–8, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 C. Eisner

logic is called a PSL property. For example, always(req -> eventually! ack)
is a PSL property saying that whenever req is asserted, ack should be asserted
sometime in the future, and always {req ; ack ; grant} |=> {busy[*] ; done}
is a PSL property that says that whenever req is asserted followed by ack and
then by grant, busy should be asserted and stay so until done occurs. The tem-
poral layer also allows an elementary form of quantification, so that the property
forall i in {0:7}: always ((req & tag==i) -> eventually! (ack & tag==i))
says that whenever req is asserted, eventually an associated ack will occur, where
the association is indicated by a matching value of tag. Other features include a
clock operator that can be used to change the default view of time, and the abort
operator, described in Section 3 below.

The verification layer contains directives that tell the verification tool what
to do with a PSL property: e.g., should it be asserted (checked), or should
it be assumed, or perhaps used as the basis for coverage measurement? The
verification layer also provides a way to group sets of directives into a vunit, or
verification unit, which can be referred to by name in the verification tool.

PSL is good for hardware verification, and various tools for both formal and
dynamic hardware verification using PSL are available from companies such as
IBM, Cadence, Mentor graphics, etc. PSL is also good for software verification,
and PSL or its precursor, Sugar, has been used internally at IBM for software
model checking [4][10][11], as well as within a C++ based simulation environ-
ment [9]. More recently, it has also been used externally for runtime verification
of software [7].

Intuitively, dynamic and runtime verification have a linear view of time. In
the remainder of this paper, I will explain why the move from branching time
Sugar to linear time PSL, a big deal in theory, was not a problem in practice and
required no modification to our runtime simulation checker generator FoCs (nor
to our model checker RuleBase). I will present the truncated semantics that were
developed to support non-maximal finite paths as seen in dynamic and runtime
verification, and show how they are related to the support of resets in a reactive
system, and finally I will discuss the FoCs approach to the issue of how time
“ticks” in software.

2 Masking Branching vs. Linear Time

In branching time logics such as CTL [8] and PSL’s precursor, Sugar, time is
branching. That is, the semantics are given with respect to a state in the model,
and every possible future of that state is considered. In linear time logics such
as LTL [19] and PSL, time is linear. That is, the semantics are given with
respect to set of ordered states (a path) in the model, and thus every state has a
single successor. In theory, this is a very big deal. The complexity of branching
time model checking is better than that of linear time model checking [21], the
expressive power of the two is incomparable [17], and of course, only linear time
makes sense for dynamic and runtime verification.

PSL for Runtime Verification: Theory and Practice 3

In practice, however, the issue is not such an important one. The overlap
between linear and branching time is a large one, and the vast majority of
properties used in practice belong to the overlap. Furthermore, there is a simple
syntactic test that can be used to confirm that a syntactically similar CTL/LTL
formula pair is equivalent [17]. As an example, the test confirms that the CTL
formula AG(p → AXq) is equivalent to the LTL formula G(p → Xq). The test
does not work for every equivalent pair; for example, it does not confirm that the
CTL formula AG(¬p → AX¬q) is equivalent to the LTL formula G((Xq) → p),
even though the pair are equivalent. However, it works in enough cases to make
it practically useful: for instance, the simple subset of PSL [5][12] obeys the test.

For this reason, the move from the original CTL-based semantics of Sugar
to the current, LTL-based semantics of PSL was not a major issue in practice,
neither for IBM’s model checker RuleBase [20] nor for its dynamic verification
tool FoCs [1]. In both cases, the move is masked by the Sugar compiler. For
RuleBase, it checks whether a (linear) PSL formula passes the syntactic test
of [17] and if so, uses the established (branching) algorithms. For FoCs, the tool
has always used a syntactic test similar to that of [17] to weed out branching
formulas that cannot be checked dynamically, and the same test weeds out linear
formulas for which the dynamic checking is not trivial.

3 Finite Paths and the Truncated Semantics

In the sequel, I will use PSL syntax corresponding to the basic LTL operators,
as follows: always is equivalent to the LTL operator G, and the PSL operators
eventually!, until, until!, next and next! correspond to the LTL operators
F , W , U , X and X !, respectively.

Traditionally, LTL semantics over finite paths [18] are defined for maximal
paths in the model. That is, if we evaluate a formula over a finite path under
traditional LTL finite semantics, it is because the last state of the path has no
successor in the model. For a long time, finite paths on non-maximal paths were
treated in an ad-hoc manner – see [6], for instance. In [14], we considered in
detail the problem of reasoning with temporal logic on non-maximal paths.

A truncated path is a finite, not necessarily maximal path. Truncated paths
are seen by incomplete formal methods, such as bounded model checking, and
also by dynamic and runtime verification (at any point before the program ends
we have seen a partial, non-maximal path). In the truncated semantics, there
are three views of a finite path. The weak view takes a lenient view of truncated
paths – a property holds even if there is doubt about the status of the property
on the full path. The strong view is a strict view of truncated paths – a property
does not hold if there is doubt about the status of the property on the full path.
The neutral view of a truncated path is simply the traditional semantics for a
maximal path.

For example, on a finite path such that p holds at every state on the path,
the property always p might or might not hold on the full path: if it turns out
that the truncated path continues with a p at every state, our property will hold

4 C. Eisner

on the full path, but if there is even one future state with no p, it will not hold.
Thus, the property holds in the weak view, and does not hold in the strong view.
It holds in the neutral view, because always p holds on our path if we consider
it to be maximal.

As another example, consider a finite path such that q holds at no state on the
path. The property eventually! q might or might not hold on the full path: if
there is a future q, the property holds, otherwise it does not. Thus, eventually!
q holds in the weak view, and does not hold in the strong view. It does not hold
in the neutral view, because eventually! q does not hold on such a path if we
consider it to be maximal. If q does hold for some state on the path, then the
property holds in the neutral view, and there is no doubt that it will hold as
well on any continuation of the path. Thus, on such a path the property holds
in the weak, neutral and strong views.

Consider now a finite path on which p holds at states 2, 4 and 20, and q
holds at state 15. As with our previous examples, the property always (p ->
eventually! q) might or might not hold on the full path, depending on how
the truncated path continues. Thus the property holds in the weak view and
does not hold in the strong view. It does not hold in the neutral view, because
always (p -> eventually! q) does not hold on our path if we consider it to
be maximal – the p that holds at state 20 is missing a q. Even if there were such
a future q, for instance if p held at states 2, 4 and 20 and q held at states 15 and
25 – then there still would be doubt about whether the property holds on the
full path, because there might be a future p that does not see an appropriate q.
Thus, our property would still hold in the weak view and not hold in the strong
view. However, it does hold in the neutral view on our new path, because the
neutral semantics do not worry about possible futures – they consider the path
to be maximal.

The weak view can be understood as a weakening of all operators (assum-
ing negation-normal form) [13], and the strong view can be understood as a
strengthening of all operators (under the same assumption). Thus, it is easy
to see that eventually! ϕ holds weakly on any path for any ϕ (including
false): eventually! ϕ is equivalent to true until! ϕ. Weakening this gives
true until ϕ, which holds on any path for any ϕ. Similarly, we can show that
always ϕ does not hold strongly on any path for any ϕ (including true), because
always ϕ is equivalent to ϕ until false. Strengthening that gives ϕ until!
false, which holds on no path for no ϕ.

In practice, very few formulas hold strongly on any path, because most for-
mulas begin with the always operator. Thus, the weak view of truncated paths
is most useful in practice. However, the strong view is dual to the weak, and
giving it up would result in a logic not closed under negation.

On an infinite path, the weak, neutral and strong views coincide [14]. Never-
theless, the truncated semantics can be useful in the context of infinite paths,
because an infinite path may contain finite, non-maximal segments. They can be
useful in the context of finite maximal paths for the same reason. For instance,

PSL for Runtime Verification: Theory and Practice 5

a hardware reset or a software event such as “clear form”, “start over”, or “new
query” may partition a path into two parts: a finite, truncated part until the
reset or software event, and a possibly infinite, possibly maximal part (depending
on whether or not the original path was maximal) afterwards. The PSL abort
operator truncates a path and moves to the weak view. Thus, the property
always (ϕ abort reset) partitions the path into segments at every occurrence
of reset (discarding the states on which reset occurs). The property ϕ must
hold neutrally on the final segment, and weakly on the remaining segments (each
of which was followed in the original path by a state on which reset held).

The point of the abort operator can be best appreciated by comparing it to
the until operator. Both of the following properties:

(always (p − > eventually! q)) abort reset (1)

(p − > eventually! q) until reset (2)

need (p -> eventually! q) to hold up until reset holds. However, they differ
with respect to what happens at that point. Consider a path π of length 20 such
that p holds at states 2 and 10, q holds at state 4, and reset holds at state 15.
Property 1 holds on such a path, because the abort operator truncates the path
at the occurrence of reset and takes us to the weak view. Since the sub-property
(always (p -> eventually! q)) holds weakly on the truncated path, Property 1
holds on the original path. However, Property 2 does not hold on path π, because
sub-property (p -> eventually! q) does not hold at state 10.

The behavior of the abort operator is very easy to describe in an informal
manner, but very difficult to formalize. Our first try, the abort semantics [14],
defined simply

w |= ϕ abort b ⇐⇒
either w |= ϕ or
there exist j < |w| and word w′ such that wj |= b and w0..j−1w′ |= ϕ

This looks intuitive, but turns out not to be what we wanted. Consider the prop-
erty (eventually! false) abort b on a path where b occurs at some point.
We want the property to hold on such a path, because we want eventually!
false to hold in the weak view on a finite path. To see this, recall that
eventually! false is equivalent to true until! false. If we weaken the
until! operator we get true until false which holds on any path. However,
looking back to the proposed semantics, there is no w′ we can choose that will
give us what we want. Others [3] were more successful, but ended up with a
semantics that required intricate manipulations of two contexts within the se-
mantics of the existing LTL operators.

We have since presented two simple and elegant formulations. The original
truncated semantics, presented in [14], directly defines semantics for each of
the three views (weak, neutral and strong). The result is a semantics that is

6 C. Eisner

equivalent to the reset semantics of [3], but whose presentation is much cleaner
and easier to grasp. The �, ⊥ approach to the truncated semantics, presented
in [15], takes another tack, and folds the three views into an equivalent but more
compact representation. It does so by adding two new letters, � and ⊥, to the
alphabet, such that everything holds on �, including false, and nothing holds
on ⊥, including true. With these two new letters, the original formulation of the
semantics presented above works because we can choose a w′ consisting entirely
of the letter �. While the �, ⊥ approach uses a slightly more cryptic formulation
than the original truncated semantics, we have found it useful in characterizing
the relation between the weak and strong views, as described in [13].

4 The FoCs Approach to the Ticking of Time

PSL does not dictate how time ticks. The formal semantics (see for instance
Appendix B of [12]) is based on a sequence of states, but how those states are
derived from the hardware or software under verification is not defined. This is
good news for software, because it means that the formal semantics can be used
as is. However, it does not provide any practical answers.

FoCs is a tool that takes PSL properties and translates them into monitors
that allow the use of PSL in event-based software. Originally, FoCs was designed
for hardware simulations [1], but it can work with other event-based software as
well. In the FoCs approach, the responsibility for time belongs to the applica-
tion. If the user has embedded a PSL property in C (or other) code, FoCs will
translate the property into a state machine embedded in the code at the loca-
tion where the property originally appeared. Then, time is considered to have
ticked when the state machine is reached at runtime. The FoCs approach is a
generic solution for any language, but of course it is not a general solution for
any application, in the case that some other definition of the ticking of time is
desired.

Acknowledgements

PSL was and continues to be the work of many people. I would particularly like
to acknowledge my IBM colleagues Ilan Beer, Shoham Ben-David, Dana Fisman
and Avner Landver for their early work on Sugar, and Dana Fisman, Avigail
Orni, Dmitry Pidan and Sitvanit Ruah for more recent work on PSL.

The members of the Accellera FVTC (Formal Verification Technical Commit-
tee) and the IEEE P1850 PSL Working Group are too numerous to mention by
name – a complete list can be found in the respective standards [2] [16] – but
I would particularly like to thank Harry Foster and Erich Marschner, chairman
and co-chairman of the FVTC and chairman and secretary of the IEEE P1850
Working Group, for leading the process that led to standardization.

PSL for Runtime Verification: Theory and Practice 7

The work described in Section 3 was joint work with Dana Fisman, John
Havlicek, Yoad Lustig, Anthony McIsaac, Johan Mårtensson and David Van
Campenhout (in various combinations).

Thank you to Dmitry Pidan for his explanation of the FoCs approach to the
ticking of time.

References

1. Abarbanel, Y., Beer, I., Gluhovsky, L., Keidar, S., Wolfsthal, Y.: FoCs - automatic
generation of simulation checkers from formal specifications. In: Emerson, E.A.,
Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, Springer, Heidelberg (2000)

2. Accellera property specification language reference manual,
http://www.eda.org/vfv/docs/psl lrm-1.1.pdf

3. Armoni, R., Bustan, D., Kupferman, O., Vardi, M.Y.: Aborts vs resets in linear
temporal logic. In: Garavel, H., Hatcliff, J. (eds.) ETAPS 2003 and TACAS 2003.
LNCS, vol. 2619, Springer, Heidelberg (2003)

4. Barner, S., Glazberg, Z., Rabinovitz, I.: Wolf - bug hunter for concurrent software
using formal methods. In: CAV, pp. 153–157 (2005)

5. Ben-David, S., Fisman, D., Ruah, S.: The safety simple subset. In: Ur, S., Bin,
E., Wolfsthal, Y. (eds.) First International Haifa Verification Conference. LNCS,
vol. 3875, pp. 14–29. Springer, Heidelberg (2005)

6. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) ETAPS 1999 and TACAS 1999. LNCS, vol. 1579,
Springer, Heidelberg (1999)

7. Cheung, P.H., Forin, A.: A C-language binding for PSL. In: Technical Report MSR-
TR-2006-131, Microsoft Research (2006)

8. Clarke, E., Emerson, E.: Design and synthesis of synchronization skeletons using
branching time temporal logic. In: Kozen, D. (ed.) Logics of Programs. LNCS,
vol. 131, pp. 52–71. Springer, Heidelberg (1982)

9. Dahan, A., Geist, D., Gluhovsky, L., Pidan, D., Shapir, G., Wolfsthal, Y., Be-
nalycherif, L., Kamdem, R., Lahbib, Y.: Combining system level modeling with
assertion based verification. In: ISQED, pp. 310–315 (2005)

10. Eisner, C.: Model checking the garbage collection mechanism of SMV. In: Stoller,
S.D., Visser, W. (eds.) Electronic Notes in Theoretical Computer Science, vol. 55,
Elsevier, Amsterdam (2001)

11. Eisner, C.: Formal verification of software source code through semi-automatic
modeling. Software and Systems Modeling 4(1), 14–31 (2005)

12. Eisner, C., Fisman, D.: A Practical Introduction to PSL. Springer, Heidelberg
(2006)

13. Eisner, C., Fisman, D., Havlicek, J.: A topological characterization of weakness.
In: Proc. 24th Annual ACM Symposium on Principles of Distributed Com puting
(PODC), pp. 1–8 (2005)

14. Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Van Campenhout, D.:
Reasoning with temporal logic on truncated paths. In: Hunt Jr., W.A., Somenzi,
F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 27–39. Springer, Heidelberg (2003)

15. Eisner, C., Fisman, D., Havlicek, J., Mårtensson, J.: The �, ⊥ approach for trun-
cated semantics. Technical Report 2006.01, Accellera (January 2006)

16. IEEE standard for property specification language (PSL). IEEE Std 1850-2005

http://www.eda.org/vfv/docs/psl_lrm-1.1.pdf

8 C. Eisner

17. Maidl, M.: The common fragment of CTL and LTL. In: Proc. 41st Annual Sympo-
sium on Foundations of Computer Science, IEEE, Los Alamitos (November 2000)

18. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer,
New York (1995)

19. Pnueli, A.: A temporal logic of concurrent programs. Theoretical Computer Sci-
ence 13, 45–60 (1981)

20. RuleBase. Available from the IBM Haifa Research Laboratory, See
http://www.haifa.il.ibm.com/projects/verification/RB Homepage/

21. Vardi, M.Y.: Branching vs. linear time: Final showdown. In: Margaria, T., Yi,
W. (eds.) ETAPS 2001 and TACAS 2001. LNCS, vol. 2031, pp. 1–22. Springer,
Heidelberg (2001)

http://www.haifa.il.ibm.com/projects/verification/RB_Homepage/

On the Semantics of

Matching Trace Monitoring Patterns

Pavel Avgustinov, Julian Tibble, and Oege de Moor

Programming Tools Group
Oxford University, United Kingdom

Abstract. Trace monitor specifications consist of a pattern that is
matched against the trace of events of a subject system. We investi-
gate the design choices in defining the semantics of matching patterns
against traces.

Some systems use an exact-match semantics (where every relevant
event must be matched by the pattern), while others employ a skipping
semantics (which allows any event to be skipped during matching). The
semantics of exact-match is well established; here we give a semantics
to skipping by providing a translation to exact-match. It turns out the
translation is not surjective: a pattern language with skipping semantics
is strictly less expressive than one with exact-match semantics. That
proof suggests the addition of a novel operator to a skipping language
that makes it equivalent to exact-match.

Another design decision concerns the atoms in patterns: are these
unique runtime events, or can multiple atoms match the same runtime
event? Many implementations have chosen predicates for atoms, and then
overlap is natural. There are some exceptions, however, and we examine
the consequences of that design choice in some depth.

1 Introduction

In recent years, much research has centered on so-called trace monitors. The
idea is simple, but powerful: a base program’s execution is observed by a sep-
arate entity (the monitor), and whenever the sequence of events matches some
predefined criterion, extra code is executed.

This kind of feature is useful in many situations. For example, when debug-
ging a program, it is possible to use trace monitoring to pinpoint the exact time
when something goes wrong, or even take some recovery action. One can use it to
implement protocols [14] in a high-level declarative fashion. Many runtime veri-
fication concerns also have natural representations as trace specifications, either
by specifying all “correct” traces (and taking action when a non-matching trace
is encountered), or by specifying violating traces (and reacting to successfully
completed matches). Examples of such properties are various API contracts and
project-specific rules that ideally would be automatically enforced, but aren’t
checkable by a conventional compiler.

Investigations of trace monitoring have originated from two distinct commu-
nities. Aspect-oriented programming (AOP) is a paradigm that allows additional

O. Sokolsky and S. Tasiran (Eds.): RV 2007, LNCS 4839, pp. 9–21, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

10 P. Avgustinov, J. Tibble, and O. de Moor

code to be triggered when certain joinpoints (identifiable events during program
execution) are encountered. From this perspective, trace monitoring is a gener-
alisation of the matching mechanism from single joinpoints to sequences of join-
points, and a number of implementations have arisen in this area (e.g. [1,14,9,7]).
Largely independently, the usefulness of program traces as an easily available
representation of program behaviour has been exploited by the Runtime Veri-
fication (RV) and (static) fault-finding communities to implement several tools
that check various constraints using this technique (e.g. [12, 11, 6, 4]).

Trace monitoring is a useful and desirable feature, as evidenced by the sheer
number of systems implementing it. A wide variety of formalisms for describing
the patterns of interest are represented: from regular expressions [1] over context-
free languages [14] to temporal logics [6] and custom query languages [12, 11];
even a general logic-independent framework [7] has been proposed. Most systems
follow the intuition above by running concurrently with the base program and
updating matching state as runtime events are encountered, but some [7] also
support an offline matching mode, which dumps all events to a log file that can
be analysed after the program run is complete.

Still, there are several important issues on which the various systems differ.
One of them is the question of whether the trace patterns can be parameterised
by free variables. This allows the programmer to write patterns that are quan-
tified over cliques of interacting objects, but they significantly complicate the
semantics and implementation of a trace monitoring feature [3], and so they are
often not supported.

Another important aspect in which the above approaches differ is the style
of semantics: some [1, 14, 9] use what we call an exact-match semantics, while
others [12, 11, 6] use a more liberal skipping semantics. The distinction is that
under an exact-match interpretation, each of the events of interest picked out by
the monitor must be accounted for by the pattern: using the intuition suggested
by temporal logics, the pattern AB means “A and next B”. In contrast to
this, a skipping semantics allows an arbitrary number of events to be ignored
in between matched events: AB means “A and eventually B”. To date, only
tracematches have provided a formal and exhaustive account of the matching
process including free variables [1], but since they are an exact-match feature,
this means that there has been no formal evaluation of the implications of a
skipping interpretation for a trace monitor.

In this paper, we aim to address this by examining the language design choices
that need to be made when implementing a skipping feature. We start with a
summary of our previous work on the semantics of tracematches in Section 2; in
particular, we give a general technique for reducing the problem of matching a
pattern with free variables to the more familiar problem of matching a ground
pattern. In Section 3, we investigate the relationship of exact-match and skipping
languages in detail, by defining a small skipping language, giving a semantics and
exploring its expressiveness. Semantic issues regarding definitions of symbols and
events are described and addressed in Section 4. We give a brief survey of related
work in Section 5 and conclude with an outlook on future work in Section 6.

On the Semantics of Matching Trace Monitoring Patterns 11

2 Trace Patterns with Free Variables

As the starting point of our investigation, we shall summarise our previous work
on the semantics of tracematches, as introduced in [1]. One of the main design
considerations for that particular system is tight integration with the AspectJ
language. As such, events of interest are defined using the standard AspectJ
mechanism for selecting runtime events (pointcuts), and an entire tracematch
can be thought of as a more expressive pointcut for triggering an advice body
as usual.

As a running example, we shall take a trace monitoring-based implementation
of the well-known Observer pattern. There, a particular type of Observer object
can register with a certain Subject (captured by the pcCreateObserver pointcut);
subsequently any update to the Subject’s state (pcUpdateSubject) should trigger
a notification of each registered observer. Observers also have the opportunity
to deregister with a subject to stop receiving notifications (pcRemoveObserver).

1 tracematch(Observer o, Subject s) {
2 sym createObserver after : pcCreateObserver(o, s);
3 sym updateSubject after : pcUpdateSubject(s);
4 sym removeObserver after : pcRemoveObserver(o, s);
5

6 createObserver updateSubject+
7

8 { o.subjectUpdated(s); }
9 }

Fig. 1. The Observer pattern as a tracematch

The tracematch implementing this is shown in Figure 1. It has three distinct
parts: an alphabet of symbols (three in this case — lines 2–4), a regular expression
over these symbols (line 6), and a body that is triggered on every successful match
(line 8). Each symbol is defined by a standard AspectJ pointcut; moreover, the
tracematch header (line 1) can declare free variables that are bound by the
symbols and can be used in the body.

Intuitively, the pattern here says “We see an observer register for a particular
subject, followed by one or more updates to that subject (and the observer hasn’t
been disassociated in the meantime)”. Each time this matches, we execute the
body, which makes use of the acquired bindings to notify the observer.

To perform the matching, we proceed as follows: each runtime event (or join-
point) is matched against every symbol defined by the tracematch; the result is
either a failure (in which case the joinpoint is ignored), or a successful match,
which may result in some tracematch variables being bound by that symbol.
We refer to the transition from the sequence of joinpoints to the sequence of
matched symbols annotated with variable bindings as filtering the trace, as it
essentially discards all events that the tracematch is not interested in.

12 P. Avgustinov, J. Tibble, and O. de Moor

The careful reader will have noticed that the symbols occurring in the actual
tracematch pattern are ground — i.e. they do not have variable annotations.
Matching a sequence of ground symbols against the pattern is a well-understood
problem: it is just traditional regular expression matching; still, we need to obtain
ground traces from the filtered trace.

Thus, after filtering the semantics performs a step called instantiation: For
each possible valuation (that is, set of runtime values for the tracematch formal
variables), the filtered program trace is projected onto the symbols compatible
with that valuation. Of course, there are infinitely many possible valuations,
but most of them would result in an empty projection (the projection will only
be non-empty if events with matching bindings have occurred in the program
history, and there are only finitely many of those at any time). However, each
non-empty projection gives us a (valuation, ground symbol trace) pair, which we
can match against the pattern in the usual way. The tracematch body is executed
once for each distinct valuation that leads to a successful match.

To illustrate, consider the Observer tracematch with this sequence of events:
sub.addObserver(o1); sub.foo() ; sub.addObserver(o2); sub.bar(); sub.delObserver(o2);

sub.update(); (here sub is a subject, and o1 and o2 are observer objects).
Filtering would discard the irrelevant events sub.foo() and sub.bar(), and match

each of the remaining events with each symbol, resulting in the following filtered
trace: createObserver(o1, sub); createObserver(o2, sub); removeObserver(o2, sub);

updateSubject(sub).
Now, there are two valuations that result in non-empty projections: (o =

o1 ∧ s = sub) and (o = o2 ∧ s = sub). The respective instantiated traces are just
createObserver updateSubject for the former and createObserver removeObserver

updateSubject for the latter. Only the former matches the pattern, so we execute
the tracematch body with the first valuation, notifying o1 but not o2.

At this stage, it should be clear why we defined the additional symbol for
removing an observer in Figure 1, even though it wasn’t used in the pattern.
Had we omitted it, any calls to the removeObserver() method would have been
filtered out without affecting the matching state, and so observers would have
still received update notifications after they had been deregistered. The extra
symbol ensures those method calls remain in the filtered, instantiated traces;
since it is not part of the pattern, no sequence of events that contains it will
trigger the tracematch body.

Note that the two-step process of filtering followed by instantiation gives a
general strategy for reducing the semantics of matching a trace pattern with free
variables to the simpler problem of matching a ground pattern against a ground
trace.

We have now summarised our formal semantics for tracematches [1]. The
(equivalent) operational semantics suggests two restrictions that need to be
placed on patterns so that they are useful in practice: no pattern should accept
the empty sequence, and any trace that matches the pattern must guarantee all
free variables bound. In the case of regular expressions, this amounts to checking
that every word in the language of the regex contains at least one binding symbol

On the Semantics of Matching Trace Monitoring Patterns 13

for every variable. Also, some care needs to be taken when updating monitors
that aren’t fully bound; a full exploration of this issue is beyond the scope of
the present document, and we refer the interested reader to [1].

3 Interpretation of Patterns

Trace monitoring systems have been developed by researchers in the fields of
Aspect-Oriented Programming [1,14,9] and Runtime Verification and fault find-
ing [12, 11, 6, 4]. It is interesting to observe that there seems to be a division
regarding the syle of semantics used: systems with an AOP background tend to
employ exact-match semantics, while those with roots in RV predominantly use
skipping — perhaps due to the similarity to temporal logic expressions using
’eventually’. Arguably, this leads to nicer specificationsfor many RV properties,
as essentially a pattern can be a least counter-example to the concern being
checked.

We will now discuss skipping in-depth, investigating both semantics and ex-
pressiveness. As a preliminary motivating example, the skipping pattern one
would naturally write for the observer concern we saw above is createObserver

∼removeObserver updateSubject. Note that we don’t need to allow for several
updateSubject events in the pattern, as any such events would be skipped.

3.1 A Simple Skipping Language

In order to compare the two kinds of pattern interpretation systematically, we
will define two related languages. The first, which we shall call Lem, is just
the fragment of the tracematch language obtained by omitting the + operator,
as it adds no expressive power over the standard Kleene star ∗. This language
will be interpreted in an exact-match style, and as tracematches have a formal
semantics, Lem inherits it without modification. Figure 2 illustrates its syntax.

pattern := term | seqPattern ’ | ’ pattern
term := simplePattern | simplePattern term

| simplePattern ’∗’
simplePattern := symbol | ’(’ pattern ’)’

Fig. 2. Regular expression patterns in tracematches

The second language, Lskip, is a skipping language that is as close as possible
to the tracematch formalism — that is, it has an explicit alphabet of symbols
that may bind free variables, and the pattern is regex-like.

A number of design considerations need to be addressed, however. Firstly,
note that any skipping language must have explicit negation; in its absence it
would be impossible to prohibit certain events from occurring. We borrow PQL’s
syntax [12] and write ∼A for the negation of a symbol A.

14 P. Avgustinov, J. Tibble, and O. de Moor

It is important to understand this construct fully in order to see why the
restrictions we shall place upon it are necessary. This is not the usual comple-
mentation, as found in Extended Regular Expresions (EREs): When we write a
pattern like A ∼B A, we do not mean “we see an A, followed by any sequence not
matching the pattern B, followed by another A” (as would be the ERE inter-
pretation; this would match the trace a b b a). Instead, the negation constrains
the set of symbols we are allowed to skip. Thus, the above pattern really means
“We see an A, then any number of symbols that aren’t B, followed by a second
A” (and does not match the trace a b b a).

The distinction is important: it is well-known that EREs can be transformed
into standard regular expressions (at the cost of a non-elementary blowup in
the size of the pattern), so the semantics of an exact-match ERE language (as
implemented, for example, by one of JavaMOP’s logic plugins [7]) do not dif-
fer significantly from the standard tracematch semantics. In a skipping setting,
negation isn’t matched against a part of the trace directly, but affects how the
subpatterns around it are matched.

Because of this, it is not well-defined to use negation on compound patterns:
The pattern ∼(A B) (while perfectly valid as an ERE pattern) makes no sense in
a skipping setting. Indeed, it is common for skipping features to restrict negation
— in the case of PQL [12], it is only allowed on single symbols. We will go beyond
that, and allow negation of alternations of symbols, or, equivalently, of symbol
sets. Thus, in our small language, it is legal to write ∼(A|B), and this allows
skipping of only those events that do not match A or B.

An additional pitfall is sequential composition of patterns. Consider the fol-
lowing example: ∼A ∼B. This is ill-defined in the same way that ∼(A B) is ill-
defined; it makes no sense with our interpretation of negation. As a consequence,
we must also restrict sequential composition to prevent this kind of problem from
occurring. We achieve this by allowing composition only on fenced terms (which
are just terms that do not begin or end in negation).

pattern := fencedTerm | fencedTerm ’|’ pattern
fencedTerm := simplePattern | simplePattern fencedTerm

| simplePattern ’∼’ symbolSet fencedTerm
simplePattern := symbol | ’(’ pattern ’)’
symbolSet := symbol | ’(’ symbol ’|’ symbolSet ’)’

Fig. 3. Syntax of patterns in Lskip

Finally, the overall pattern should also be a fenced term. The resulting skip-
ping language, Lskip, is shown in Figure 3.

Note that Kleene closure is not present in Lskip. This is not an oversight on
our part; indeed, it turns out that the traditional interpretation of the Kleene
star is redundant under a skipping semantics. Suppose t is a fenced term. We
can expand the Kleene closure t∗ thrice (using alternations), and then observe

On the Semantics of Matching Trace Monitoring Patterns 15

that any sequence of events is allowed in between the two symbols tt in the
penultimate disjunct, in particular t∗.

t∗ ≡ ε | t | t t | t (t∗) t

≡ ε | t | t t

3.2 Semantics of Lskip

We are now ready to give a formal semantics for Lskip, the skipping language
defined above. This will take the form of a syntax-directed translation of terms
in the skipping language Lskip to equivalent patterns in our tracematch lan-
guage Lem. As the semantics of matching Lem patterns are well-understood, this
procedure will capture the meaning of Lskip patterns.

[[fTerm | pat]] =⇒ [[fTerm]] | [[pat]]
[[sPat fTerm]] =⇒ [[sPat]] Σ∗ [[fTerm]]
[[sPat ∼α fTerm]] =⇒ [[sPat]] (Σ \α)∗ [[fTerm]]
[[symbol]] =⇒ symbol

Fig. 4. Translation from Lskip to Lem

The rewrite rules are given in Figure 4. We can see that alternation in Lskip is
translated to alternation in Lem; any particular symbol is also translated to itself.
The interesting cases involve sequential composition (with or without negation).
If we have a simple pattern followed by some fenced term, we evaluate this by
translating the pattern, inserting Σ∗ and translating the fenced term. Recall
that Σ is the set of all symbols defined by the tracematch; thus the subpattern
Σ∗ amounts to allowing an arbitrary sequence of events, whether or not they
are matched by some symbol, to occur.

Consider now negation. If a symbol set α ⊆ Σ is prohibited between a sim-
ple pattern and a fenced term in Lskip, then the translation again recursively
rewrites the pattern, then allows an arbitrary sequence of events that match sym-
bols in Σ \ α, followed by a sequence matching the fenced term. Note how the
intended meaning of [[sPat fTerm]] (allow any events in between the two subex-
pressions) and [[sPat ∼α fTerm]] (allow any event except those in α between the
two subexpressions) become fully explicit after the translation.

In order for the semantics of a pattern to be well-defined, recall that it needs to
bind all free variables. It is not difficult to see that (based on the translation above)
an Lskip pattern is permissible if and only if its translation is permissible in Lem.

3.3 Expressiveness of Lskip

Since we defined the semantics of Lskip by a syntax-directed translation into Lem,
our skipping language is no more expressive than the exact-match language. In
other words, merely interpreting a formalism with the skipping paradigm does

16 P. Avgustinov, J. Tibble, and O. de Moor

not increase the expressive power. Recall, however, that we were forced to exclude
Kleene closure from Lskip. It is natural to presume that in accommodating the
skipping paradigm, we were forced to make our language less expressive.

In this section, we will show that this is indeed the case. We will do this by
providing a backwards translation — a syntax-directed rewriting of Lem patterns
into Lskip— for a proper subset of Lem. Indeed, the fragment we will consider
contains all translations produced by the rewriting presented in Section 3.2, and
will therefore be equivalent in expressive power to Lskip.

To obtain a suitable fragment of Lem, it turns out we need to restrict Kleene
closure: we will allow only patterns in which the Kleene star is applied to a
symbol set, rather than to a general pattern. Moreover, no two Kleene-starred
expressions must appear next to each other. Note how these restrictions mirror
the restrictions on negation and sequential composition that we were forced to
make in designing Lskip.

[[term | pat]] =⇒ [[term]] | [[pat]]
[[sPat term]] =⇒ [[sPat]] ∼Σ [[term]]
[[sPat α∗ term]] =⇒ [[sPat]] ∼(Σ \α) [[term]]
[[symbol]] =⇒ symbol

Fig. 5. Translation from a fragment of Lem to Lskip

The translation is shown in Figure 5. Again, alternation is mapped to alterna-
tion and symbols to themselves. When translating the sequential composition of
a pattern and a term, we insert the negation of Σ between the recursively trans-
lated subexpressions — this achieves precisely the desired effect of prohibiting all
events matching a declared symbol at that point, as specified by an exact-match
semantics. Finally, if there is a Kleene closure of a symbol set α in between two
subpatterns, then we insert the negation of the symbol set Σ \ α — that is, we
prohibit everything that is not in α, and hence allow everything that is in α.

This completes the backwards translation of a subset of Lem to Lskip. Note that
since skipping makes traditional Kleene closure obsolete, Lskip cannot express pat-
terns like A(BC)∗ — which matches all words that start with an A, followed by any
number of BC-pairs with no other symbols interspersed. Therefore, we have proved
Lskip equivalent to a proper subset of our tracematch language Lem.

Interestingly, translating the exact-match pattern from the Observer trace-
match (Figure 1) does not yield the skipping pattern one would naturally write:
createObserver ∼removeObserver updateSubject. Applying the backward transla-
tion to the Lem pattern (rewritten to use Kleene star) yields the Lskip pattern
createObserver ∼(createObserver|removeObserver) updateSubject.

3.4 Making Lskip More Expressive

A natural consideration after the discussion above is the question of how we can
“fix” the expressiveness of Lskip— what kind of feature would we need to add
to be able to express the same patterns as Lem?

On the Semantics of Matching Trace Monitoring Patterns 17

To give a satisfactory answer, recall that the reason we lost some expressive
power was in subtle interactions between negation (as interpreted in a skipping
setting) and Kleene closure. This suggests trying an extension that combines the
two in some way to achieve the desired results.

As one possibility, we propose a new kind of Kleene closure-like operator,
which is parameterised by a set of symbols α: ⊕α. It can be applied to any
fenced term, and the intended interpretation is:

t⊕α ≡ t | t ∼α t⊕α

Intuitively, t⊕α is the Kleene closure of t obtained while prohibiting all events
in α between the repetitions of t. Note that t⊕α is a fenced term.

First of all, we shall augment the Lskip semantics with a translation rule for
our new operator:

[[term⊕α]] =⇒ ([[term]] (Σ\α)∗)∗ [[term]]

Intuitively, this says: match zero or more occurrences of “a trace matching
the term followed by any symbols not in α”, followed by a trace matching the
term.

Finally, we will complete our examination by translating unrestricted Kleene
closure in Lem into our extended skipping language. First of all, we rewrite
the exact-match pattern (using alternations if necessary) in such a way that all
occurrences of the Kleene star are replaced by the Kleene “plus” (unless they
are on symbol sets, in which case the old translation already accounts for them).
Then we can handle the resulting terms as follows:

[[term+]] =⇒ [[term]]⊕Σ

Recall the example pattern A(BC)∗ that, as we argued above, can’t be cap-
tured by the original skipping language. With the extension, it just becomes the
following pattern: A | A(B ∼(Σ)C)⊕Σ .

4 Definition of Symbols and Events

Another way in which semantics of trace-monitors vary is in the relation between
symbols and runtime events. To clarify, by “runtime event” we mean a joinpoint,
i.e. a well-defined point during program execution. Such an event may or may
not be relevant to a trace monitor; this is determined by matching it against
the symbols. Now, unlike in traditional formal language theory, in this context
symbols may overlap — that is, two or more different symbols could match the
same runtime event.

One possible interpretation is suggested by temporal logics: we can view sym-
bols as predicates that may or may not hold at the same point in time (join-
point). If the pattern language supports it, one could then write specifications
that require both symbol A and symbol B to hold at the same time, and in-
deed approaches that are based on temporal logics often make use of Boolean
combinations of symbols. Tracematches don’t allow this, but fully support over-
lapping symbols. The interpretation there is that if several symbols match a

18 P. Avgustinov, J. Tibble, and O. de Moor

runtime event, then there are several filtered traces, one for each possible sym-
bol instantiation.

An alternative view is to treat the trace monitor as a consumer of monitor
events, which are different than runtime events in that they correspond to exactly
one symbol. They are different from symbols because they may have associated
variable bindings. This means that if a runtime event matches multiple symbols,
then all of these instantiated symbols occur (as monitor events) in the filtered
trace in some order.

To illustrate the difference, we will compare the JavaMOP and Tracematch
systems on a small example, because their symbol definitions look very similar —
both have adapted the pointcut language of AspectJ for this purpose. Two sym-
bols are declared for each system in Figure 6. In both cases, ‘Clear’ is defined
as ‘immediately before calling a method named clear ’, and ‘List’ is defined as
‘immediately before calling a method on an object of type List ’.

JavaMOP: Tracematches:
Event Clear : begin(call(∗ ∗.clear())) ; sym Clear before : call(∗ ∗.clear()) ;
Event List : begin(call(∗ List .∗(..))) ; sym List before : call(∗ List .∗(..)) ;

Fig. 6. Symbol declarations for JavaMOP and Tracematches

However, since these symbols overlap, the respective patterns will sometimes
be matched against different traces. Consider for example this sequence of calls:
someSet.clear() ; someList.clear () ; someList.size (), in which the first call matches
the symbol Clear, the second matches both symbols, and the last matches List.

The difference is, of course, caused by the second call. Tracematches interpret
symbols as predicates; correspondingly, there are two filtered traces to match
against: Clear Clear List and Clear List List. In JavaMOP, on the other hand,
the second call gives rise to two atomic, distinct events, so that the pattern is
matched against Clear Clear List List.

Interpreting symbols as events is problematic because the number of symbols
in a program trace need not be the same as the number of joinpoints in the base
program. In the example above, the pattern (Clear|List)(Clear|List)(Clear|List)

might be expected to match at the third call, but it would in fact also match
at the second call. It is also difficult to justify the ordering of events when they
are triggered by a single joinpoint. For example, why is the trace not Clear List
Clear List? The JavaMOP designers resolved this non-determinism by specifying
that events corresponding to the same cause are generated in the order that the
symbols are defined in the specification.

5 Related Work

The purpose of the present paper is to relate multiple strands of research, in par-
ticular contrasting the matching semantics used in aspect-oriented programming

On the Semantics of Matching Trace Monitoring Patterns 19

Table 1. Overview of some trace monitoring systems

System Implementation Semantic choices
free variables formalism exact-match overlapping

tracematches [1] yes regex yes predicates

PQL [12] yes CFG no predicates

PTQL [11] yes SQL no predicates

JavaMOP [7] partial multiple yes events

J-LO [13] yes LTL no predicates

tracecuts [14] no CFG yes events

HAWK [8] yes multiple yes predicates

Arachne [10] yes regex n/a predicates

and those in mainstream runtime verification. We have furthermore pointed out
subtle variations that exist between different systems in the definition of symbols
and events. So far our discussion has focussed on concepts; here we briefly relate
those concepts to systems that instantiate them.

Table 1 lists some systems and, where applicable, the choices made in their
design. These are often conscious choices, but sometimes the result of an accident
of implementation. Concretely, we examine whether the style of semantics is
exact-match or skipping, and how overlapping symbols are handled (if they are
possible to define). For completeness, we also state the formalism each system
uses, and whether or not free variables are supported.

PQL [12] is the principal example of a system with skipping semantics. Its
patterns may be recursively defined, which is why we marked the formalism as
Context Free Grammars (CFG) in the above table.

PTQL [11] also warrants some further discussion. It uses an SQL like language
to write patterns, and joinpoints are regarded as records that have fields for
(logical) start and end times. So to say that e1 occurred before e2, one states
the condition e1.endT ime < e2.startT ime in the query. With such a formalism,
skipping is clearly the semantics of choice. Consequently the language does not
provide for a Kleene star.

JavaMOP [7] is particularly interesting and relevant, because of its goal to be
a framework where different specification formalisms can be plugged in. Indeed,
such plugins can support both extended regular expressions and LTL variants.
It supports free variables, but only as a matching context: the values bound
by the variables aren’t available for use when a match is completed (it is, how-
ever, possible to use action blocks associated with symbols to manually track
bindings).

J-LO [13] represents a blend of traditional runtime verification (it uses LTL to
express patterns), and aspect-oriented programming (events are specified with
AspectJ pointcuts). With the use of LTL, and the focus on finding violations of
properties, skipping semantics is the natural choice.

Tracecuts [14] is by contrast squarely in the aspect-oriented programming
tradition. It uses an exact match semantics for context-free patterns. It splits
runtime events into multiple monitor events in the same way as JavaMOP.

20 P. Avgustinov, J. Tibble, and O. de Moor

HAWK [8] is perhaps the most general formalism discussed here: it provides
a rule based system that can express temporal logics, metric logics, extended
regular expressions and it allows the user to define new logics. We hope that the
present paper helps to map out the choices that designers of such logics must
face.

Arachne [10] is a trace monitoring system for C. Its specification formalism is
like a process algebra, restricted to the linear recursions that correspond to finite
automata - hence we classified it as ‘regular expressions’. The specifications are
however more like definitions in process algebra, and hence the issue of skipping
versus exact match does not arise: the matching process is coded by hand.

We have omitted systems from Table 1 that are so different as to be incom-
parable. For example, in Alpha [5], the queries are written as Prolog predicates
over lists of events. Again, at that level of specification, there is no distinction be-
tween skipping and non-skipping: the programmer has to control such behaviour
herself. Naturally that makes Alpha extremely expressive, but such expressiv-
ity comes at the cost of much poorer execution speed than the other systems
compared here.

6 Conclusion and Future Work

The contributions of this paper are as follows:

– A reduction of the semantics of matching with variables to matching without
variables, via the two-sep process of filtering and instantiation.

– A careful analysis of what pattern language constructs make sense for the
skipping semantics: especially negation needs special care, as does Kleene
closure.

– A formal semantics for a skipping language via a translation to an exact-
match with a well understood semantics.

– A proof that skipping is strictly less expressive than exact-match.
– A proposal for a new pattern language construct (a modified form of Kleene

closure) that, when included in a skipping language, makes it equivalent in
expressive power to an exact-match language.

These contributions are an encouraging start to the comparative study of
the semantics of matching patterns to traces, but much remains to be done.
A pressing question concerns the inclusion of recursion (context-free languages)
in the pattern specifications. We have seen that in the treatment of Kleene
closure some subtleties arose, and it will be interesting to generalise that study
to arbitrary recursive patterns.

Ultimately, it is our aim to provide a unifying framework for all these for-
malisms based on Datalog. In a separate strand of research, we have described a
semantics of the AspectJ pointcut matching mechanism in terms of Datalog [2],
and we are now extending that to richer formalisms for runtime verification,
including those discussed here. We plan to use such a semantics in terms of
Datalog as the basis of a single unified backend for many runtime verification
systems.

On the Semantics of Matching Trace Monitoring Patterns 21

References

1. Allan, C., Avgustinov, P., Christensen, A., Hendren, L., Kuzins, S., Lhoták, O., de
Moor, O., Sereni, D., Sittampalam, G., Tibble, J.: Adding Trace Matching with
Free Variables to AspectJ. In: Object-Oriented Programming, Systems, Languages
and Applications, pp. 345–364. ACM Press, New York (2005)

2. Avgustinov, P., Hajiyev, E., Ongkingco, N., de Moor, O., Sereni, D., Tibble, J.,
Verbaere, M.: Semantics of static pointcuts in aspectj. In: Felleisen, M. (ed.) Prin-
ciples of Programming Languages (POPL), ACM Press, New York (2007)

3. Avgustinov, P., Tibble, J., de Moor, O.: Making Trace Monitoring Feasible. In:
OOPSLA 2007, ACM Press, New York (2007)

4. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based runtime verifica-
tion. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 44–57.
Springer, Heidelberg (2004)

5. Bockisch, C., Mezini, M., Ostermann, K.: Quantifying over dynamic properties
of program execution. In: DAW 2005 2nd Dynamic Aspects Workshop, Technical
Report 05.01, pp. 71–75. Research Institute for Advanced Computer Science (2005)

6. Bodden, E.: J-LO - A tool for runtime-checking temporal assertions. Master’s the-
sis, RWTH Aachen University, 2005.

7. Chen, F., Roşu, G.: A monitoring oriented programming environment for Java.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 546–550.
Springer, Heidelberg (2005)

8. d’Amorim, M., Havelund, K.: Event-based runtime verification of java programs.
In: WODA 2005: Proceedings of the third international workshop on Dynamic
analysis, pp. 1–7. ACM Press, New York (2005)

9. Douence, R., Fritz, T., Loriant, N., Menaud, J.-M., Ségura, M., Südholt, M.: An ex-
pressive aspect language for system applications with arachne. In: Aspect-Oriented
Software Development, pp. 27–38. ACM Press, New York (2005)

10. Fritz, T., Ségura, M., Südholt, M., Wuchner, E., Menaud, J.-M.: An application of
dynamic AOP to medical image generation. In: DAW05 2nd Dynamic Aspects
Workshop, Technical Report 05.01, pp. 5–12. Research Institute for Advanced
Computer Science (2005)

11. Goldsmith, S., O’Callahan, R., Aiken, A.: Relational queries over program traces.
In: Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages and Applications, pp. 385–402. ACM
Press, New York (2005)

12. Martin, M., Livshits, B., Lam, M.S.: Finding application errors using PQL: a pro-
gram query language. In: Proceedings of the 20th Annual ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Languages and Applications,
pp. 365–383. ACM Press, New York (2005)

13. Stolz, V., Bodden, E.: Temporal Assertions using AspectJ. Electronic Notes in
Theoretical Computer Science 144, 109–124 (2006)

14. Walker, R., Viggers, K.: Implementing protocols via declarative event patterns. In:
ACM Sigsoft International Symposium on Foundations of Software Engineering
(FSE-12), pp. 159–169. ACM Press, New York (2004)

Collaborative Runtime Verification with
Tracematches

Eric Bodden1, Laurie Hendren1, Patrick Lam1,
Ondřej Lhoták2, and Nomair A. Naeem2

1 McGill University, Montréal, Québec, Canada
2 University of Waterloo, Waterloo, Ontario, Canada

Abstract. Perfect pre-deployment test coverage is notoriously difficult
to achieve for large applications. With enough end users, many more test
cases will be encountered during an application’s deployment than during
testing. The use of runtime verification after deployment would enable
developers to detect and report on unexpected situations. Unfortunately,
the prohibitive performance cost of runtime monitors prevents their use
in deployed code.

In this work we study the feasibility of collaborative runtime verifi-
cation, a verification approach which distributes the burden of runtime
verification onto multiple users. Each user executes a partially instru-
mented program and therefore suffers only a fraction of the instrumen-
tation overhead.

We focus on runtime verification using tracematches. Tracematches
are a specification formalism that allows users to specify runtime ver-
ification properties via regular expressions with free variables over the
dynamic execution trace. We propose two techniques for soundly parti-
tioning the instrumentation required for tracematches: spatial partition-
ing, where different copies of a program monitor different program points
for violations, and temporal partitioning, where monitoring is switched
on and off over time. We evaluate the relative impact of partitioning on
a user’s runtime overhead by applying each partitioning technique to a
collection of benchmarks that would otherwise incur significant instru-
mentation overhead.

Our results show that spatial partitioning almost completely elimi-
nates runtime overhead (for any particular benchmark copy) on many of
our test cases, and that temporal partitioning scales well and provides
runtime verification on a “pay as you go” basis.

1 Introduction

In the verification community it is now widely accepted that, especially for large
programs, verification is often incomplete and hence bugs still arise in deployed
codeon themachines of endusers.However, verification code is rarelydeployed, due
to largeperformance penalties induced by current runtime verificationapproaches.
Consequently, when errors do arise in production environments, their causes are
often hard to diagnose: the available debugging information is very limited.

O. Sokolsky and S. Tasiran (Eds.): RV 2007, LNCS 4839, pp. 22–37, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Collaborative Runtime Verification with Tracematches 23

Tracematches [1] are one mechanism for specifying runtime monitors. Trace-
matches enable developers to state sequences of program events and actions to
take if the execution matches the sequence. Events bind objects in the heap; a
tracematch only triggers if all of the events occur on a consistent set of objects.

According to researchers in industry [13], larger industrial companies would
likely be willing to accept runtime verification in deployed code if the overhead
is below 5%. In previous work on tracematches, we have shown that, in many
cases, static analysis can enable efficient runtime monitoring by improving both
the specification [3] and program under test [6]. Most often, our techniques can
reduce runtime overhead to under 10%. However, our evaluation also showed that
unreasonably large overheads—sometimes more than 100%—remained for some
classes of specifications and programs. Other techniques for runtime monitoring
also incur similar runtime overheads; for instance, the Program Query Lan-
guage [10] causes up to 37% overhead on its benchmark applications (although
it is intended to be a debugging tool rather than a tool for monitoring deployed
programs), and JavaMOP [7] incurs up to 13% overhead on non-pathological
test cases for runtime monitoring.

In this work, we attack the problem of runtime verification-induced overhead
by using methods from remote sampling [9]. Because companies which produce
large pieces of software (which are usually hard to analyze) often have access
to a large user base, one can generate different kinds of partial instrumenta-
tion (“probes”) for each user. A centralized server can then combine runtime
verification results from runs with different probes. Although there are many
advantages to a sampling-based approach, we are interested in using sampling
to reduce instrumentation overhead for individual end users. We have developed
two approaches for partitioning the overhead, spatial partitioning and temporal
partitioning.

Spatial partitioning works by partitioning the instrumentation points into
different subsets. We call each subset of instrumentation points a probe and each
user is given a program instrumented with only one probe. This works very
well in many cases, but in some cases a probe may contain a very hot—that is,
expensive—instrumentation point. In those cases, the unlucky user who gets the
hot probe will experience most of the overhead.

Temporal partitioning works by turning the instrumentation on and off peri-
odically, reducing the total overhead. This method works even if there are are
very hot probes, because even those probes are only enabled some of the time.
However, since probes are disabled some of the time, any runtime verification
properties of interest may be ignored while the probes are disabled.

In both spatial and temporal partitioning, the remaining instrumentation
must operate correctly and, in particular, must never report false positives. The
key point is that our transformations must never remove instrumentation points
that can remove candidate bindings; identifying such instrumentation points can
be difficult for tracematches, which may bind one or more objects and require
each event to match the same objects. We have found a simple mechanism for

24 E. Bodden et al.

reducing the number of these instrumentation points that appears to work well
on our benchmarks.

We explored the feasibility of our approach by applying our modified trace-
match compiler to benchmarks whose overheads persisted after the static anal-
ysis in [6]. We first experimented with spatial partitioning. We found that some
benchmarks were very suited to spatial partitioning. In these cases, each probe
produced lower overhead than the complete instrumentation, and many probes
carried less than 5% overhead. However, in other cases, some probes were so
hot that they accounted for almost all of the overhead; spatial partitioning did
not help much in those cases. We also experimented with temporal partitioning
and examined runtimes when probes were enabled for 10, 30, 50, 70, 90 and 100
percent of the time. As expected, we found that the overhead increased steadily
with the proportion of time that the probes were enabled, so that one can gain
limited runtime monitoring by running probes only some of the time.

The remainder of this paper is structured as follows. In Section 2, we give
background information on tracematches and describe the instrumentation for
evaluating tracematches at runtime. In Section 3, we explain the spatial and
temporal partitioning schemes. We evaluate our work in Section 4, discuss related
work in Section 5 and finally conclude in Section 6.

2 Background

The goal of our research is to monitor executions of programs and ensure that
programs never execute pathological sequences of events. In this project, we
monitor executions using tracematches. A tracematch defines a runtime monitor
using a regular expression over an alphabet of user-defined events in program
executions. The developer is responsible for providing a tracematch to be verified
and definitions for each event, or symbol, used in the tracematch. He provides
definitions for symbols using AspectJ [8] pointcuts. Pointcuts often specify pat-
terns which match names of currently executing methods or types of currently
executing objects. Pointcuts may also bind parts of the execution context. For
instance, at a method-call pointcut, the developer may bind the method param-
eters, the caller object, and the callee objects, and may refer to these objects
when the tracematch matches. If a tracematch does not bind any variables, then
it reduces to verifying finite-state properties of the program as a whole.

Figure 1 presents an example tracematch. The tracematch header, in line 1,
declares a tracematch variable i. Lines 2–5 declare two symbols, next and hasNext,
which establish the alphabet for this tracematch’s regular expression. The next

symbol matches calls to an Iterator’s next()method and binds the target object of
the method call to i. The hasNext symbol matches calls to Iterator.hasNext(), on
the same iterator i. Line 7 declares the tracematch’s pattern (regular expression)
and body. The pattern, next next, states that the tracematch body must execute
after two consecutive calls to next(), as long as no hasNext() call intervenes.

Collaborative Runtime Verification with Tracematches 25

tracematch(Iterator i) {

sym next before:

call(* java.util.Iterator+.next()) && target(i);

sym hasNext before:

call(* java.util.Iterator+.hasNext()) && target(i);

next next { /* emit error message; may access variable i */ }

}

Fig. 1. Tracematch checking that hasNext() is always called before next()

A crucial point about the semantics of tracematches’ regular expressions is
that intermediate events matching an explicitly-declared symbol cannot be ig-
nored ; that is, any occurrence of a non-matching symbol in an execution invali-
dates related partial matches. In our example, a sequence next hasNext next (all
on the same iterator, of course) would not match. (Avgustinov et al. discuss the
semantics of tracematches in detail in [2].)

The implementation of tracematches uses finite state machines to track the
states of active partial matches. The compiler tracks variable-to-object bindings
with constraints; each state q in the finite state machine has an associated con-
straint that stores information about groups of bound heap objects that must
or must not be in state q. Constraints are stored in Disjunctive Normal Form
as a set of disjuncts. Each disjunct maps from tracematch variables to objects.
Note that the runtime cost of this approach comes from the large number of
simultaneously-bound heap objects, and that the number of tracematch vari-
ables does not contribute to the runtime cost.

q0 q1 q2

Fig. 2. Finite state machine for the tracematch of Figure 1

Figure 2 presents the automaton for the HasNext pattern; we can observe that
two calls to next (on the same i) will cause the automaton to hit its final state
q2. Note that state q1 carries a dashed self-loop. We call this loop a skip-loop.
Skip loops remove partial matches that cannot be extended to complete matches:
they delete a partial match whenever an observed event invalidates that partial
match.

As an example, assume that state q1 is associated with the constraint {[i �→
i1], [i �→ i2]}; that is, the program has executed next() once, and only once, on
each of the iterators i1 and i2, following the most recent call to hasNext() on
each of i1 and i2. If the program then executes hasNext() on i2, then another call
to next() on i2 can no longer trigger an immediate match. Hence the skip-loop

26 E. Bodden et al.

labelled hasNext will reduce the constraint on the intermediate state q1 to {[i �→
i1]}; the implementation discards the disjunct for i2 at q1. (In the tracematch
semantics, the skip-loop implements a conjunction of the constraint at q1 with
the binding i �= i2.)

The tracematch compiler weaves code to monitor tracematches into programs
at appropriate event locations. For every static code location corresponding to a
potential event execution, the compiler therefore includes instrumentation code
that also updates the appropriate disjuncts. This instrumentation code is called a
shadow. In this paper, we use a previously-published static analysis that removes
shadows if they can be shown to never contribute to complete matches [6]; for
instance, a program which calls hasNext() but never next() would never trigger
the final state of the HasNext automaton, so the hasNext shadows can removed.

3 Shadow Partitionings

Collaborative runtime verification leverages the fact that many users will execute
the same application many times to reduce the runtime verification overhead for
each user. The two basic options are to (1) reduce the number of active shadows
for any particular run; or (2) reduce the (amortized) amount of work per active
shadow. To explore these options, we devised two partitioning schemes, spatial
and temporal partitioning. Spatial partitioning (Section 3.1) reduces the number
of active shadows per run, while temporal partitioning (Section 3.2) reduces the
amortized workload per active shadow over any particular execution.

Our partitioning schemes are designed to produce false negatives but no false
positives. Our monitoring may miss some pattern matches (which will be caught
eventually given enough executions), but any reported match must actually occur.

3.1 Spatial Partitioning

Spatial partitioning reduces the overhead of runtime verification by only leaving
in a subset of a program’s shadows. However, choosing an arbitrary subset of
shadows does not work; in particular, arbitrarily disabling skip shadows may
lead to false positives. Consider the following code with the HasNext pattern.
for(Iterator i = c.iterator(); i.hasNext();)

Object o = i.next();

In this case, if the iterator i only exists in this loop, one safe spatial parti-
tioning would be to disable all shadows in the program except for those in the
loop. However, disabling the hasNext skip shadow on line 1 and enabling the next

shadow on line 2 on a collection with two or more objects gives a false positive,
since the monitor “sees” two calls to next() and not the call to hasNext() which
prevents the match.

Enabling arbitrary subsets of shadows can also lead to wasted work. Disabling
the next shadow in the above example and keeping the hasNext shadow would,
of course, lead to overhead from the hasNext shadow. But, on their own, hasNext
shadows can never lead to a complete match without any next shadows.

Collaborative Runtime Verification with Tracematches 27

We therefore need a more principled way of determining sensible groups of
shadows to enable or disable. In previous work, we have described the notion of a
shadow group, which approximates 1) the shadows needed to keep tracematches
triggerable and 2) the skip-shadows which must remain enabled to avoid false
positives. We will now summarize the relevant points; the complete details are
given in [6]. We start by defining the notion of a static joinpoint shadow.

Definition 1 (Shadow). A shadow s of a tracematch tm is a pair (labs, binds),
where labs is the label of a declared symbol of tm and binds is a variable binding,
modelled as a mapping from variables to points-to sets. A points-to set is a set
of object-creation sites in the program. The points-to set pts(v) for a variable
v contains the creation sites of all objects which could possibly be created at
runtime and assigned to v.

In the example code above, the hasNext shadow in line 1 would be denoted
by (hasNext, {i �→ {i1}}), assuming that we denote the creation site of iterator
objects that might be bound by this shadow by i1.

Definition 2 (Shadow group). A shadow group is a pair of 1) a multi-set of
shadows called label-shadows and 2) a set of shadows called skip-shadows . All
shadows in label-shadows are labelled with labels of non-skip edges on some path
to a final state, while all shadows in skip-shadows are labelled with a label of a
skip-loop.

We use a multi-set for label-shadows to record the fact that the automaton might
not reach its final state unless two or more shadows with the same label execute.
For instance, the HasNext pattern only triggers after two next shadows execute;
the multiplicities in the multi-set encode the number of times that a particular
symbol needs to execute before the tracematch could possibly trigger.

Definition 3 (Consistent shadow group). A consistent shadow group g is
a shadow group for which all variable bindings of all shadows in the group have
points-to sets with a non-empty intersection for each variable.

For our HasNext example, a consistent shadow group could have this form:

label-shadows = [(next , i �→ {i1, i2}), (next , i �→ {i1})],
skip-shadows = {(hasNext , i �→ {i1}), (hasNext , i �→ {i1, i3})}

This shadow group is consistent—it may lead to a match at runtime—because
the variable bindings for i could potentially point to the same object, namely
an object created at creation site i1. The shadow group holds two label shad-
ows (labelled with the non-skip labels next). If the label shadows had disjoint
points-to sets, then no execution would bind the tracematch variables to consis-
tent objects, and the shadow group would not correspond to a possible runtime
match. In addition, the shadow group holds all skip-shadows that have points-to
sets that overlap with the label-shadows in the shadow group.

28 E. Bodden et al.

Conceptually, a consistent shadow group is the static representation of a possi-
bly complete match at runtime. Every consistent shadow group may potentially
cause its associated tracematch to match, if the label shadows execute in the
proper order. Furthermore, only the skip shadows in the shadow group can pre-
vent a match based on the shadow group’s label shadows.

Our definition of a shadow group is quite well-suited to yielding sets of shad-
ows that can be enabled or disabled in different spatial partitions. We therefore
define a probe to be the union of all label-shadows and skip-shadows of a given
consistent shadow group. (In constructing probes from shadow groups, we dis-
card the multi-set structure of the label shadows and combine the label-shadows
and skip-shadows into a single set). Probes “make sense” because they contain
a set of shadows that can lead to a complete match and they are sound because
they also contain all of the skip-shadows that can prevent that match. (We will
explain why skip-shadows are crucial for probes in Section 3.2). Note that differ-
ent probes may overlap; indeed, as Section 4 shows, many similar probes share
the same hot shadows.

We can now present our algorithm for spatial partitioning.

– Compute all probes (based on the flow-insensitive analysis from [6]).
– Generate bytecode with two arrays: one array mapping from probes to shad-

ows and one array with one entry per shadow.
– When emitting code for shadows, guard each shadow’s execution with ap-

propriate array look-ups.

The arrays, along with some glue code in the AspectJ runtime, allow us to
dynamically enable and disable probes as desired. In the context of spatial par-
titioning, we choose one probe to enable at the start of each execution; however,
our infrastructure permits experimentation with more sophisticated partitioning
schemes.

3.2 Temporal Partitioning

We found that spatial partitioning was effective in distributing the workload of
runtime verification in many cases. However, in some cases, we found that a single
probe could still lead to large overheads for some unlucky users. Two potential
reasons for large overheads are: 1) a shadow group may contain a large number
of skip-shadows, if all those shadows have overlapping points-to sets, leading
to large probes; or 2) if shadows belonging to a probe are repeatedly executed
within a tight loop which would otherwise be quite cheap, any overhead due to
such shadows would quickly accumulate. The HasNext pattern is especially prone
to case 2), as calls to next() and hasNext() are cheap operations and almost
always contained in loops.

In such situations, one way to further reduce the runtime overhead is by sam-
pling: instead of monitoring a given probe all the time, we monitor it from time
to time and hope that the program is executed long enough that any violations
eventually get caught. However, it is unsound to disable an entire probe and

Collaborative Runtime Verification with Tracematches 29

then naïvely re-enable it again on the same run: missing a skip shadow can lead
to a false positive.

Consider the following code and the HasNext pattern:

for(Iterator i = c.iterator(); i.hasNext();)
Object o = i.next();

If we disabled monitoring during the call to hasNext, we could get a false pos-
itive after seeing two calls to next, since the intermediate call to hasNext went
unnoticed.

Because false positives arise from disabling skip-shadows, one sound solution
is to simply not disable skip-shadows at all. Unfortunately, the execution of skip-
shadows can be quite expensive; we found that leaving skip-shadows enabled also
leaves a lot of overhead, defeating the purpose of temporal partitioning.

However, we then observed that if a state s holds an empty constraint (i.e.
no disjuncts), then skip-shadows originating at s no longer need to execute1.
We implemented this optimization for our temporal partitioning and found it
to be quite effective: Section 4 shows that our temporal partitioning, with this
optimization, does not incur much partitioning-related overhead; most of the
overhead is due only to the executing monitors. Intuitively, this optimization
works because, while all non-skip shadows are disabled, no new disjuncts are
being generated. Hence, the associated constraint will become empty after few—
often, just one—iterations of the skip-shadow, practically degenerating the skip-
shadow to a no-op.

We implemented the temporal partitioning as follows.

– Generate a Boolean flag per tracematch.
– When emitting code for shadows, guard each non-skip shadow with the ap-

propriate flag.
– Change the runtime to start up an additional instrumentation control thread.

The control thread switches the instrumentation on and off at various time
intervals. Figure 3 presents the parameters that the instrumentation control
thread accepts; non-skip edges are enabled and then disabled after ton millisec-
onds. Next, after another toff milliseconds, the non-skip edges are enabled again.

Note that the Boolean flag we generate is independent of the Boolean array we
use for spatial partitioning. If both spatial and temporal partitioning are used,
a non-skip shadow is only enabled if both the Boolean array flag (from spatial
partitioning) for this particular shadow and the Boolean flag (from temporal
partitioning) for its tracematch are enabled. A skip shadow will be enabled if
the Boolean array flag for its tracematch is enabled.

The thread can also scale the activation periods: every n periods, it can scale
ton by a factor ion and toff by ioff. This technique—a well-known technique from
1 This optimization is only safe if all variables are known to be bound at s. However,

for all patterns we used in this work, and for almost all patterns we know, this is
the case for all states. Our implementation statically checks this property and only
applies the optimization if it holds.

30 E. Bodden et al.

on

off

t
off

t
on

t
off

t
on

t
on

i
on

· t
off

i
off

·

Fig. 3. Parameters for temporal partitioning, with increase period of n = 2

adaptive systems such as just-in-time compilers—allows us to keep non-skip
edges enabled for longer as the program runs longer, which gives our temporal
partitioning a better chance of catching tracematches that require a long execu-
tion time to match. Because we increase the monitoring periods over time, the
cost of monitoring scales with the total execution time of the program.

4 Benchmarks

To demonstrate the feasibility of our approach, we applied our modified trace-
match compiler to five of the hardest benchmark/tracematch combinations from
previous evaluations [6]. These benchmarks continue to exhibit more than 10% of
runtime overhead, even after we applied all available static optimizations. They
all consist of tracematches that verify properties of frequently used data struc-
tures, such as iterators and streams, in the applications of version 2006-10 of the
DaCapo benchmark suite [5]. As usual, all our benchmarks are available on
http://www.aspectbench.org/, along with a version of abc implementing our
optimization. In the near future we also plan to integrate this implementation into
the main abc build stream. Table 1 explains the tracematches that we used.

Table 1. Tracematches applied to the DaCapo benchmarks

4.1 Spatial Partitioning

We evaluated spatial partitioning by applying the algorithm from Section 3.1 to
our five benchmark/tracematch combinations, after running the flow-insensitive
static analysis described in [6]. Table 2 shows the runtime overheads with full

http://www.aspectbench.org/

Collaborative Runtime Verification with Tracematches 31

Table 2. Number of classes and methods per benchmark (taken from [5]), plus over-
head of the fully instrumented benchmark, and number of probes generated for each
benchmark

benchmark classes methods complete overhead # probes
antlr/Reader 307 3517 471.45% 4
chart/FailSafeIter 706 8972 25.08% 742
lucene/HasNextElem 309 3118 12.53% 6
pmd/FailSafeIter 619 6163 44.36% 426
pmd/HasNext 619 6163 66.53% 32

0

20

40

60

80

100

ru
nt

im
e

ov
er

he
ad

54

 686 5

5

4
415

5
26

antlr/Reader
chart/FailSafeIter

lucene/HasNextElem
pmd/FailSafeIter

pmd/HasNext

Fig. 4. Runtime overheads per probe in spatial partitioning (in percent; bars indicate
clumps of probes, labelled by size of clump)

instrumentation. All of these overheads exceed 10%, and the overhead for antl-
r/Reader is almost 500%. Table 2 also presents the number of probes generated
for each benchmark.

Under the spatial partitioning approach, our compiler emits instrumented
benchmarks which can enable or disable each probe dynamically. We tested the
effect of each probe individually by executing each benchmark with one probe
enabled at a time; this gave us 1210 benchmark configurations to test. For our
experiments, we used the Sun Hotspot JVM version 1.4.2_12 with 2GB RAM
on a machine with an AMD Athlon 64 X2 Dual Core Processor 3800+. We
used the -s large option of the DaCapo suite to provide extra-large inputs,
which made it easier for us to measure changes in runtimes. Figure 4 shows
runtime overheads for the probes in our benchmarks. Dots indicate overheads
for individual probes. For some benchmarks, many probes were almost identical,
sharing the same hot shadows. These probes therefore also had almost identical

32 E. Bodden et al.

overheads. We grouped these probes into clumps and present them as a bar,
labelled with the number of probes in the clump.

Our results demonstrate that, in some cases, the different probes manage
to spatially distribute the overhead quite well. However, spatial partitioning
does not always suffice. For pmd/FailSafeIter, 9 probes out of 426 have overheads
exceeding 5%, while for chart/FailSafeIter, 56 such cases exist, out of 742 probes in
total. On the other hand, the lucene/HasNextElem and pmd/HasNext benchmarks
contain only one hot probe each; spatial partitioning is unlikely to help in these
cases.

Finally, antlr/Reader still shows high overheads, but these overheads are much
lower than the original overhead of 471.45%. Interestingly, the four different
overheads do not add up to 471.45%. Upon further investigation, we found that
two probes generate many more disjuncts than others. In the fully instrumented
program, each shadow in each probe has to look up all the disjuncts, even if
they are generated by other probes, which might lead to overheads larger than
the sum of the overheads for each individual probe. We are currently thinking
about whether this observation could lead to an optimization of the tracematch
implementation in general. (Disjunct lookup is described in greater detail in [4].)

We conclude that spatial partitioning can sometimes be effective in spreading
the overhead among different probes. However, in some cases, a small number
of probes can account for a large fraction of the original total overhead. In those
cases, spatial partitioning does not suffice for reducing overhead, and we next
explore our temporal partitioning technique for improving runtime performance.

4.2 Temporal Partitioning

To evaluate the effectiveness of temporal partitioning, we measured ten different
configurations for each of the five benchmark/tracematch combinations. Figure 5
presents runtimes for each of these configurations. The DaCapo framework col-
lects these runtimes by repeatedly running each benchmark until the normalized
standard deviation of the most recent runs is suitably small.

Diamond-shaped data points depict measurements of runtimes with no tem-
poral partitioning; the left data point includes all probes (maximal overhead),
while the right data point includes no probes (no overhead). The gap between
the right diamond data point and the gray baseline, which denotes the runtime
of the completely un-instrumented program, shows the cost of runtime checks.
Note that spatial partitioning will always cost at least as much as the right
diamond.

The circle-shaped data points present the effect of temporal partitioning. We
measured the runtimes resulting from enabling non-skip edges 10, 30, 50, 70, 90
and 100 percent of the time. Our first experiment sought to determine the effect
of changing the swapping interval for temporal partitioning.

At first, we executed four different runs for each of those seven configurations,
with four different increase periods n. We doubled the duration of the on/off in-
tervals every n = 10, 40, 160 and 640 periods. As expected, n has no measurable
effect on runtime performance. We therefore plotted the arithmetic mean of the

Collaborative Runtime Verification with Tracematches 33

0 20 40 60 80 100

% of execution time that non-skip shadows are disabled

20

40

60

80

ru
nt

im
e

(s
)

temporal partitioning
no partitioning
base execution time

0 20 40 60 80 100

% of execution time that non-skip shadows are disabled

40

42

44

46

48

50

ru
nt

im
e

(s
)

temporal partitioning
no partitioning
base execution time

0 20 40 60 80 100

% of execution time that non-skip shadows are disabled

48

50

52

54

ru
nt

im
e

(s
)

temporal partitioning
no partitioning
base execution time

0 20 40 60 80 100

% of execution time that non-skip shadows are disabled

50

55

60

65

70

75

ru
nt

im
e

(s
)

temporal partitioning
no partitioning
base execution time

0 20 40 60 80 100

% of execution time that non-skip shadows are disabled

50

60

70

80

ru
nt

im
e

(s
)

temporal partitioning
no partitioning
base execution time

0 20 40 60 80 100

% of execution time that non-skip shadows are disabled

1

2

4

sl
ow

do
w

n

antlr
chart
lucene
pmd/FailSafeIter
pmd/HasNext

Fig. 5. Results of temporal partitioning for five benchmark/tracematch combinations

34 E. Bodden et al.

results over the different increase periods. The full set of numbers is available on
our website.

Figure 5 (f) overlays the results from all of our benchmark/tracematch com-
binations. Note that the shape of the overhead curve is quite similar in all of
the configurations. In all cases, temporal partitioning can properly scale down
from 100% overhead, when all non-skip edges are always enabled, to just above
0%, when non-skip edges are never enabled. We were surprised to find that the
decrease in runtime overhead did not scale linearly with a decrease in monitor-
ing intervals. This data suggest that there might exist a “sweet spot” where the
overhead is consistently lowest compared to the employed monitoring time.

The relationship between “no temporal partitioning” with all probes enabled
and the 100% measurement with temporal partitioning enabled might seem
surprising at first: we added additional runtime checks for temporal partition-
ing, and yet, in the cases of chart-FailSafeIter, lucene-HasNextElem and pmd-
FailSafeIter, the code executes significantly faster. We believe that this speedup
is due to the skip-loop optimization that we implemented for temporal partition-
ing: this optimization is applied even when non-skip edges are enabled, thereby
improving overall performance.

The far right end of the graphs shows that the overhead of the runtime checks
for spatial and temporal partitioning are virtually negligible. They are not zero
but close enough to the baseline to not hinder the applicability of the approach.

5 Related Work

Our work on collaborative runtime verification is most closely related to the
work of Liblit et al. for automatic bug isolation. The key insight in automatic
bug isolation is that a large user community can help isolate bugs in deployed
software using statistical methods. The key idea behind Cooperative Bug Isola-
tion is to use sparse random sampling of a large number of program executions
to gather information. Hence, one can amortize the cost of executing assertion-
dense code by distributing it to many users, each user only executing a small
randomly selected number of assertions. This minimizes the overhead experi-
enced by each user. Although each execution report in isolation gives only very
limited information, the aggregate of all such reports provides a wealth of de-
bugging information for analysis and a high chance of finding violations of an
assertion, if they exist.

Pavlopoulou et al. [12] describe a residual test coverage monitoring tool which
starts off by instrumenting all the code. As different parts of the program are
executed, the code is periodically re-instrumented, with probes added only in
places which have not been covered by the testing criteria. Probes from frequently
executed regions are therefore removed in the first few re-instrumentation cycles,
reducing the overhead in the long term since the program spends more and more
time in code regions without any probes. Such an adaptive instrumentation
should be applicable to our setting, too. To avoid false positives, one would have
to disable entire shadow groups at a time.

Collaborative Runtime Verification with Tracematches 35

Patil et al. [11] propose two different approaches to minimize overhead due
to runtime checking of pointer and array accesses in C programs. Customization
uses program slicing to decouple the runtime checking from the original program
execution. The second approach, shadow processing, uses idle processors in mul-
tiprocessor workstations to perform runtime checking in the background. The
shadow processing approach uses two processes: a main process, which executes
the original user program, i.e. without any run-time checking, and a shadow pro-
cess which follows the main process and performs the intended dynamic analysis.
The main process has minimal overhead (5%-10%), mostly arising from the need
for synchronization and sharing of values between the two processes. Such an
approach would not work for arbitrary tracematches, which might arbitrarily
modify the program state, but could work for the verification-oriented trace-
matches we are investigating.

Recently, Microsoft, Mozilla, GNOME, KDE and others have all developed
opt-in services for reporting crash data. When a program crashes, recovery code
generates and transmits a report summarizing the state of the program. Recently,
Microsoft’s system has been extended to gather data about abnormal program
behaviour in the background; reports are then automatically sent every few days
(subject to user permission). Reports from all users can then be aggregated and
analyzed for information about causes of crashes.

We briefly mention a number of alternative approaches for specifying prop-
erties for runtime verification. The Program Query Language [10] is similar to
tracematches in that it enables developers to specify properties of Java programs,
where each property may bind free variables to runtime heap objects. PQL sup-
ports a richer specification language than tracematches, since it is based on
stack automata rather than finite state machines. Monitoring-Oriented Program-
ming [7] is a generic framework for specifying properties for runtime monitoring;
developers use MOP logic plugins to state properties of interest. PQL, MOP,
and related approaches, can all benefit from collaborative runtime verification
techniques.

6 Conclusion and Future Work

In this paper we have presented two techniques for implementing collaborative
runtime verification with tracematches. The main idea is to share the instru-
mentation over many users, so that any one user pays only part of the cost
of the runtime verification. Our paper has described the spatial and temporal
partitioning techniques and demonstrated their applicability to a collection of
benchmarks which exhibit high instrumentation overheads.

Spatial partitioning allocates different probes—consistent subsets of instru-
mentation points—to different users; probes generally have lower overheads than
the entire instrumentation. Our experimental evaluation showed that spatial par-
titioning works well when there are no particularly hot probes.

36 E. Bodden et al.

Temporal partitioning works by periodically enabling and disabling instru-
mentation. We demonstrated a good correspondence between the proportion of
time that probes were enabled and the runtime overhead.

We are continuing our work on making tracematches more efficient on many
fronts, including further static analyses. We are also continuing to build up our
benchmark library of base programs and interesting tracematches.

References

1. Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhoták, O.,
de Moor, O., Sereni, D., Sittampalam, G., Tibble, J.: Adding Trace Matching with
Free Variables to AspectJ. In: Object-Oriented Programming, Systems, Languages
and Applications, pp. 345–364. ACM Press, New York (2005)

2. Avgustinov, P., de Moor, O., Tibble, J.: On the semantics of matching trace
monitoring patterns. In: Seventh Workshop on Runtime Verification, Vancouver,
Canada, March. LNCS, (2007)

3. Avgustinov, P., Tibble, J., Bodden, E., Lhoták, O., Hendren, L., de Moor, O.,
Ongkingco, N., Sittampalam, G.: Efficient trace monitoring. Technical Report abc-
2006-1, (March 2006), http://www.aspectbench.org/

4. Avgustinov, P., Tibble, J., de Moor, O.: Making trace monitors feasible. In: ACM
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions (2007)

5. Blackburn, S.M., Garner, R., Hoffman, C., Khan, A.M., McKinley, K.S., Bentzur,
R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosking, A.,
Jump, M., Lee, H., Moss, J.E.B., Phansalkar, A., Stefanović, D., VanDrunen, T.,
von Dincklage, D., Wiedermann, B.: The DaCapo benchmarks: Java benchmarking
development and analysis. In: OOPSLA 2006: Proceedings of the 21st annual ACM
SIGPLAN conference on Object-Oriented Programing, Systems, Languages, and
Applications, pp. 169–190. ACM Press, New York, USA (2006)

6. Bodden, E., Hendren, L., Lhoták, O.: A staged static program analysis to improve
the performance of runtime monitoring. In: 21st European Conference on Object-
Oriented Programming, Berlin, Germany, July 30th-August 3rd. LNCS, vol. 4609,
pp. 525–549. Springer, Heidelberg (2007)

7. Chen, F., Rosu, G.: MOP: An efficient and generic runtime verification framework.
In: ACM Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA) (2007)

8. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.: An
overview of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
327–353. Springer, Heidelberg (2001)

9. Liblit, B., Aiken, A., Zheng, A., Jordan, M.: Bug isolation via remote program
sampling. In: Proceedings of the ACM SIGPLAN 2003 Conference on Programming
Language Design and Implementation, San Diego, California, pp. 141–154 (June
2003)

10. Martin, M., Livshits, B., Lam, M.: Finding application errors using PQL: a program
query language. In: Proceedings of the 20th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages and Applications, pp. 365–383
(2005)

http://www.aspectbench.org/

Collaborative Runtime Verification with Tracematches 37

11. Patil, H., Fischer, C.: Low-cost, concurrent checking of pointer and array accesses
in C programs. Softw. Pract. Exper 27(1), 87–110 (1997)

12. Pavlopoulou, C., Young, M.: Residual test coverage monitoring. In: ICSE 1999.
Proceedings of the 21st International Conference on Software Engineering, pp.
277–284. IEEE Computer Society Press, Los Alamitos, CA, USA (1999)

13. Grieskamp, W.: Microsoft Research. In: Personal communication, (January 007)

Static and Dynamic Detection of Behavioral

Conflicts Between Aspects

Pascal Durr, Lodewijk Bergmans, and Mehmet Aksit

University of Twente, The Netherlands
{durr,bergmans,aksit}@ewi.utwente.nl

Abstract. Aspects have been successfully promoted as a means to im-
prove the modularization of software in the presence of crosscutting con-
cerns. The so-called aspect interference problem is considered to be one
of the remaining challenges of aspect-oriented software development: as-
pects may interfere with the behavior of the base code or other aspects.
Especially interference between aspects is difficult to prevent, as this may
be caused solely by the composition of aspects that behave correctly in
isolation. A typical situation where this may occur is when multiple ad-
vices are applied at a shared, join point.

In [1] we explained the problem of behavioral conflicts between aspects
at shared join points. We presented an approach for the detection of be-
havioral conflicts. This approach is based on a novel abstraction model
for representing the behavior of advice. This model allows the expression
of both primitive and complex behavior in a simple manner. This sup-
ports automatic conflict detection. The presented approach employs a set
of conflict detection rules, which can be used to detect generic, domain
specific and application specific conflicts. The approach is implemented
in Compose*, which is an implementation of Composition Filters. This
application shows that a declarative advice language can be exploited
for aiding automated conflict detection.

This paper discusses the need for a runtime extension to the described
static approach. It also presents a possible implementation approach of
such an extension in Compose*. This allows us to reason efficiently about
the behavior of aspects. It also enables us to detect these conflicts with
minimal overhead at runtime.

1 An Example Conflict: Security vs. Logging

We first briefly present an example of a behavioral conflict. Assume that there is
a base system that uses a Protocol to interact with other systems. Class Protocol
has two methods: one for transmitting, sendData(String) and one for receiving,
receiveData(String). Now image, that we would like to secure this protocol. To
achieve this, we encrypt all outgoing messages and decrypt all incoming mes-
sages. We implement this as an encryption advice on the execution of method
sendData. Likewise, we superimpose a decryption advice on method receiveData.
Imagine a second aspect that traces all the methods and possible arguments.
The implementation of aspect Tracing uses a condition to dynamically determine

O. Sokolsky and S. Tasiran (Eds.): RV 2007, LNCS 4839, pp. 38–50, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Static and Dynamic Detection of Behavioral Conflicts Between Aspects 39

if the current method should be traced, as tracing all the methods is not very
efficient. Aspect Tracing can, for instance, be used to create a stack trace of the
execution within a certain package.

These two advices are superimposed on the same join point, in this case Pro-
tocol.sendData1. As the advices have to be sequentially executed, there are two
possible execution orders here. Now assume that we want to ensure that no one
accesses the data before it is encrypted. This constraint is violated, if the two
advices are ordered in such a way that advice tracing is executed before advice en-
cryption. We may end up with a log file that contains “sensitive” information. The
resulting situation is what we call a behavioral conflict. We can make two obser-
vations; the first is that there is an ordering dependency between the aspects. If
advice trace is executed before advice encryption, we might expose sensitive data.
The second observation is that, although this order can be statically determined,
we are unsure whether the conflicting situation will even occur at runtime, as
advice trace is conditionally executed.

2 Approach Outlined

An approach for detecting such behavioral conflicts at shared join points has
been detailed in [1]. A shared join point has multiple advices superimposed on
it. These are, in most AOP systems, executed sequentially. This implies an or-
dering between the advices, which can be (partially) specified by the aspect
programmer. This ordering may or may not cause the behavioral conflict. The
conflict in the running example is an example of a conflict that is ordering de-
pendent. And as such can also be resolved by changing the order. However there
are conflicts, like synchronization and real-time behavior, which are independent
of the chosen order. Order dependent conflicts can be resolved by changing the
order either statically or dynamically. This kind of automatic resolution is be-
yond the scope of this paper. We have implemented such a user-defined option
is our Compose* toolset.

Our approach revolves around abstracting the behavior of an advice into a
resource operation model. Here the resources present common or shared interac-
tions (e.g. a semaphore). These resources are thus potential conflicting “areas”.
Advices interact with resources using operations. As the advices are sequentially
composed at a shared join point, we can also sequentially compose the opera-
tions for each (shared) resource. After this composition, we verify whether a set
of rules accepts the resulting sequence of operations for that specific resource.
These rules can either be conflict rules, i.e. patterns that are not allowed to
occur, or assertion rules, i.e. pattern which must always occur. These rules can
be expressed as a regular expression or a temporal logic formula.

A resource operation model is defined as follows:

Resources is the set of all resources in the system, e.g. target, sender, selector,
arguments;

1 In this paper we only focus on join point Protocol.sendData, but a similar situation
presents itself for join point Protocol.receiveData.

40 P. Durr, L. Bergmans, and M. Aksit

Operations is the set of all possible operations in the system, e.g. read, destruc-
tive write and non-destructive write;

Alphabet(resource) is the set of operations which can be carried out on a
specific resource, such that ∀resource ∈ Resources • Alphabet(resource) ⊆
V alidOperations;

ResourceOperations is the set of all valid resource operations tuples on a
specific resource, such that ResourceOperations = {(rsrc, op) • rsrc ∈
Resources ∧ op ∈ Alphabet(rsrc)};

ConflictRules(resource) is the set of conflict rules for resource resource;
AssertionRules(resource) is the set of assertion rules for resource resource.

2.1 Conflict Model

The previous described conflict detection model has been used to model the
behavior of advice. In [2] we provide more detailed information about this generic
model and show how this model is derived from two AOP approaches, namely
AspectJ and Composition Filters. In this model, we distinguish two types of
conflict, control and data related conflicts. Where the first models the effect of
advice on the control flow and the latter captures conflicts that occur due to
shared data. It is out of the scope of this paper to discuss all the details of this
generic model, please consult [2] for this. However, we will present an overview
of this generic model.

Data Conflicts. The presented resources are commonly used program elements,
which can be inspected or manipulated by advice. These are usually bound via
explicit context bindings or via pseudo variables, like thisJoinPoint in AspectJ.
These resources are: caller, target, selector, arguments, returnvalue and variables.

On these resources we can execute the following operations:

read: queries the state of the resource on which it operates;
writen: A nondestructive write will update the state of the resource on which

it operates, e.g. compressing (lossless) or encrypting the arguments, in a
reversible manner (i.e. without loss of information);

writed: A destructive write will override the state of the resource on which it
operates, this is normally irreversible;

unknown: Can be either a read, writen and writed, but not known precisely.

Now that the resources and operations are defined we present the conflict
rules to detect behavioral conflicts on data elements. In general, these conflict
rules can be expressed in any matching language. Here, we use extended reg-
ular expressions as defined by IEEE standard 1003.1[3] to specify the conflict
patterns.

– Conflict(data): writed writed: The effect of the first destructive write is
lost.

– Conflict(data): read writed: The first advice may become invalid if the data
resource is changed afterwards (at the same join point).

Static and Dynamic Detection of Behavioral Conflicts Between Aspects 41

– Conflict(data): read writen: The first advice may become invalid if the data
resource is changed afterwards (at the same join point).

– Conflict(data): writen writed: The effect of the first nondestructive write is
lost.

– Conflict(data): unknown: Using an unknown data manipulation operation
can be potentially dangerous.

The presented conflict rules have been defined on the basis of pairs, however
matching any of the rules as a sub-pattern is also considered a conflict.

Control Flow Conflicts. To capture control flow related behavioral conflicts
we also instantiate the conflict detection model to capture the effects of advice
on the control flow. We model control flow behavior as operations on the abstract
controlflow resource. On this single resource controlflow, advice can operate using
the following operations:

continue: The advice does not change the control flow, it simply passes control
to the next advice, if any.

return: The advice returns immediately to either after advice or to the caller,
and as such the original join point is no longer executed,

exit: The advice terminates the entire control flow, e.g. a exception is thrown
or an exit call is made.

We will now show which combinations of operations on the controlf low resource
(may) yield a conflict. Again, we assume here that the (conflicting) operations
are derived from two different advices.

– Conflict(controlf low): return .+: If one advice returns, another advice
which should be executed after this advice, is never executed, hence if there
are one or more other operations after a return, this will be signaled as a
conflict.

– Conflict(controlf low): exit .+: Similarly, if one advice terminates the ex-
ecution, the advice which should be executed after this advice is never exe-
cuted. hence if an exit operation is followed by one or more other operations,
this will be signaled as a conflict.

Note that especially these generic rules are typically conservative: i.e. they
aim at detecting potential conflicts, and will also point out situations that are in
reality not conflicting. It is important to see the resulting conflicts as warnings
that something might be wrong, rather than absolute errors!

One key observation we have made, is the fact that modeling the entire sys-
tem, is not only extremely complex but it also does not model the conflict at
the appropriate level of abstraction. With this we mean, that during the trans-
formation, of behavior to read and write operations on a set of variables, we
might loose important information. In our example we encrypt the arguments of
a message to provide some level of security. Our model allows for the extension
of both resources and operations to capture also more domain or application
specific conflicts.

42 P. Durr, L. Bergmans, and M. Aksit

2.2 Analysis Process

Imagine the following composed filter sequence on method Protocol.sendData in
our example. The result is the following composed filter sequence:

1 trace : ParameterTracing = { ShouldTrace => [*.*] };
2 encrypt : Encryption = { [*.sendData] }

Listing 1.1. Composed filter sequence example

Filter trace traces all parameters and return value in the beginning and end of a
method execution. Filter encrypt subsequently secures the data being send.

To illustrate how we can achieve automated reasoning using the declarative fil-
ter language of Composition Filters, we now present an example implementation
of a filter which traces all the parameters. See [2] for more detailed information.

Name
︷ ︸︸ ︷

trace :

Type
︷ ︸︸ ︷

ParameterT racing = {
Condition

︷ ︸︸ ︷

ShouldT race => [
Matching

︷ ︸︸ ︷

∗
︸︷︷︸

target

. ∗
︸︷︷︸

selector

]
Substitution

︷ ︸︸ ︷

∗
︸︷︷︸

target

. ∗
︸︷︷︸

selector

}

Name: the name of this filter;
Type: the type of this filter, a filter type can thus be instantiated;
Condition: the condition is evaluated to determine whether to continue to the

matching part. If this condition yields false, the filter will reject and execute
its corresponding reject action. If it yields a truth value, the matching part
is evaluated;

Matching: this allows for selecting a specificmessage.Amatching part canmatch
the target and/or the selector of a message. If a given message matches, the
substitution part is executed, if any, and the filter accepts. This acceptance
will result in the execution of the accept action;

Substitution: this allows for simple rewriting the target and selector of a mes-
sage.

There are many steps involved in processing and analyzing a sequence of filters
on a specific join point. One such step is to analyze the effects of each of the
composed filters. A filter can either execute an accept action or a reject action,
given a set of conditions and a message. Next, we have to determine which
filter actions can be reached and whether, for example, the target has been
read in the matching part. Filter actions perform specific tasks of a filter type,
e.g. filter action Encrypt of filter type Encryption will encrypt the arguments.
Likewise, filter action Trace of the filter type ParameterTracing will trace the
message. Most filter types execute the Continue action if the filter rejects. All this
domain information is gathered and a so-called message flow graph is generated.
A message flow graph Gmflow is a directed acyclic graph and is defined as:
< V, E, L >, where:

V is a set of vertexes representing the composition filters elements that can
be evaluated. These can be filter modules, filters, matching parts, condition
expressions, filter actions, etc... ;

Static and Dynamic Detection of Behavioral Conflicts Between Aspects 43

E: is the set of edges connecting the vertexes, such that E = {(u, v) • u, v ∈
V ∧ u �= v};

L: is the set of resource-operations labels attached to the edges, such that
L = {(e, rsrcop) • e ∈ E ∧ rsrcop ∈ ResourceOperations}.

For each shared join point a message flow graph Gmflow is created. This graph
is subsequently simulated to detect impossible or dependent paths through the
filter set. It is out of the scope of this paper to discuss the full implementation of
this simulation, please see [4] for more details. The general idea is that for each
message that can be accepted by the filter we determine its effect on the filter
set. If we do this for all possible messages, and once for those messages that are
not accepted by the filterset, we are able to determine which filter actions can be
reached and how they are reached. Impossible paths are removed and dependent
paths are marked as such.

The filter sequence presented in listing 1.1 can be translated to the filter
execution graph in figure 1.

ShouldTrace ! ShouldTrace

sel == sendData

Encrypt

Trace

sel != sendData sel == sendData sel != sendData

Continue Encrypt Continue

ContinueShouldTrace.read

sel.read sel.read

args.read

args.encrypt args.encrypt

Fig. 1. Filter execution graph example

This graph is a simplified version of the actual graph, for readability pur-
poses. The italic labels on the transitions are evaluations of the conditions (e.g.
ShouldTrace), and the message matching, e.g. message.sel(ector) == sendData.
The bold labels on the transitions show the filter actions. The underlined labels
are resource-operations tuples corresponding to the evaluation of the conditions,
matching parts and the filter actions.

Next we transform the conflict and assertion rules to graphs that are matched
to the message flow graph. We require all assertion rules to be inverted, as the
process for determining whether a rule matches only works for conflict rules.
The assertion rules can be inverted, because we use a regular language and the
alphabet is known and limited. A conflict rule graph Gconflict is a directed acyclic
graph and is defined as: < V, E, L >, where:

V is a set of vertexes;
E: is the set of edges connecting the vertexes, such that E = {(u, v) • u, v ∈

V ∧ u �= v};

44 P. Durr, L. Bergmans, and M. Aksit

L: is the set of resource-operations labels attached to the edges, such that
L = {(e, rsrcop) • e ∈ E ∧ rsrcop ∈ ResourceOperations}. The label can
also be a wildcard to indicate that we are that we are not interested in a
certain step.

Once we have these conflict rule graphs we can intersect both graphs and see
whether the intersection is empty. If so the conflict rule does not match and
as such is conflict free for this rule. If the intersection is not empty, we have
encountered a conflict and a trace is asked. To summarize, a shared join point
contains a conflict if:

Lemma 1. ∃grule ∈ Gconflict • grule ∩ Gmflow �= ∅
For each such conflict we have a corresponding path Pconflict, or a set of paths
if there are more paths leading to the same conflicting situation. Pconflict is a
sub graph of Gmflow.

In this case a conflict rule stating that it is is not allowed for the arguments to
be read before they are encrypted. In a regular expression: Conflict(arguments):
^read encrypt, this states that a conflict occurs if we encounter a situation
where the arguments are read and afterwards they are encrypted. From this
graph we can see that in the left most path, the arguments are read before they
are encrypted. The intersection of the conflict rule with the message flow graph
of shared join point Protocol.sendData is not empty, and thus the conflicting
situation is detected.

Now let us elaborate on this conflict a bit more. In the example we use two fil-
ters, one of these filter uses a condition. Condition ShouldTrace is used to deter-
mine whether to trace this method or not. Whether this condition is true or false
depends on some runtime configuration option. Statically we see that there is a
possibility of a conflict, as we modeled both true and false values of the condition.
This enhances our ability to reason about behavioral conflict but it also introduces
possible false positives. The use of such a condition may always yield a false value,
i.e. no methods should be traced. This thus requires dynamic monitoring to de-
termine whether such a conflict actually occurs at runtime. The next section will
discuss in which situations static checking is not sufficient, when using AOP.

3 Issues with Static Checking in AOP

The previous section outlined our approach to statically determine behavioral
conflicts between advice. Although this provides a developer with a list of poten-
tial conflicts, not all these conflicts may occur at runtime. The simplest example
of such a situation, is when the code in which the conflicting join point resides
is never executed. However, there are more complex cases where static checking
is not sufficient.

3.1 Dynamic Weaving

There are AOP approaches which employ dynamic weaving or proxy-base tech-
niques to instrument an application. Although this provides some unique features

Static and Dynamic Detection of Behavioral Conflicts Between Aspects 45

over statically based weaving, it does present difficulties when statically rea-
soning about behavioral conflicts at shared join points. One such difficulty is
that not all shared join points are known statically. As such, it becomes hard
to know which advices are imposed at a shared join point. An example of such
a construct is conditional superimposition found in Composition Filters. In this
case one can assume a worst case situation, where each advice can be composed
with any other advice. However, this can lead to large set of orders and possible
combinations which have to be checked.

3.2 Dynamic Advice Execution

Most AOP approaches support conditional or dynamic properties in either point-
cut or advice language. Examples of such constructs are, the if(...) pointcut in
AspectJ and conditions in Composition Filters. In this case all shared join points
are known. However, not all possible combinations of advice may occur at runtime.
This can depend on some runtime state. In the running example we use condition
ShouldTrace to determine whether to trace or not. At runtime this condition can
be true or false. In our static approach, we simulate all possibilities of conditions.

3.3 Concurrency

In this paper we limit ourselves to the detection of concurrency conflicts at a
single shared join point. We are aware that concurrency conflicts can also occur
between join points. Concurrency conflicts between advice at a single shared
join point, are caused by an unanticipated interleaving of the advices. This in-
terleaving can occur because there is a single advice applied to a join point and
that join point is concurrently executed. In this case the aspect is conflicting
with itself and no resolution can be made. The interleaving can also be caused
by a composition of multiple advices. In this case we may be able to resolve the
conflict by changing the order. In both cases the problem can be prevented using
atomic advice execution.

A single aspect or multiple aspects can cause concurrency conflicts. In either
case, it is difficult to statically determine all possible interleavings. To determine
the possible interleavings is not only hard, but also simulating all interleavings
is very time consuming.

This section presented three situations where static checking is not sufficient.
The next section will provide a runtime extension of the approach outlined in
section 2. Although we focus on the second situation our approach is equally
applicable to the first and third situation.

4 A Runtime Extension

As motivated by the previous section, we would like to extent our work to also
capture behavioral conflicts at runtime. A naive application would be to simply
instrument all advices and monitor all join points dynamically. This is required

46 P. Durr, L. Bergmans, and M. Aksit

for capturing concurrency conflicts, as explained in the previous section. How-
ever, for the other two conflicting situations we can reason more efficiently. In
section 2 about our approach we stated that for each possible conflict we get
a set of conflicting paths called: Pconflict. This graph is translated into a DFA
for checking at runtime. The nodes of this graph are elements that can be eval-
uated in Composition Filters. The edges represents the control flow between
these nodes. Each edge has a set of labels attached to it which represent the
corresponding resource operation tuples.

It should be noted that most likely the set of conflicting paths is smaller than
the set of all possible paths. We only have to monitor paths that are conflicting
for a specific resource and that contain dynamic elements. This will in practice
reduce the number of paths to check substantially.

To informally outline our runtime extension we will use the example con-
flict, as presented earlier. In figure 1, we saw that the left most path was a
conflicting path. This full path is: < ShouldT race.read >, < args.read >, <
selector.read >, < args.encrypt >. However, only part of this path is conflicting
with our requirement. In this case: Conflict(args):^read encrypt. This conflict
rule only limits the usage of operations for resource args. We can thus reduce
the conflicting path to: < args.read >, < args.encrypt >. Where < args.read >
is caused by the execution of filter action Trace, and < args.encrypt > is caused
by filter action Encrypt. We only have to monitor the execution of these two filter
actions to determine whether the conflict occurs or not. In this case, even the
execution of filter action Trace is sufficient, this is however not true in the gen-
eral case. There are cases where one has to monitor the evaluation of conditions,
message matching and message substitutions.

4.1 Instrumentation

To be able to monitor the system while running, we have to inject monitoring
code inside the advices. We assume that all code will be passed through the
Compose* compiler. In our case this is always the case. However, with other
more dynamic approaches this may not be a valid assumption. Our compiler
will inject the bookkeeping code in the appropriate places. This ensures that the
executing code will emit updates to the monitor. The next section will provide
more details about this monitor.

4.2 Analysis Process At Runtime

There are multiple steps involved in checking at runtime for a behavioral con-
flict. Our runtime extension uses an Abstract Virtual Machine(AVM)2 to do
bookkeeping at runtime. This AV M is defined as:

ConflictingResources is the set of resources which should be monitor, where
ConflictingResources ⊆ Resources,

2 Note, that besides the name there are no similarities between the AVM and a runtime
virtual machine, e.g. the JVM.

Static and Dynamic Detection of Behavioral Conflicts Between Aspects 47

OperationSequence(rsrc) is the sequence of operations carried out on re-
source rsrc, where ∀rsrc ∈ ConflictingResources
• OperationSequence(rsrc) ⊆ Alphabet(rsrc),

ConflictRules(rsrc) is the set of conflict rules for resource rsrc.

Now that we have defined the monitor we define the three phases that are in-
volved while reasoning about behavioral conflicts at a shared join point.

1. Initialization: At the start of the first edge in conflicting path we initialize
the AVM. This AVM is responsible for keeping the state of resources during
the execution of this join point. It keeps track of all operations that are
carried out on resources. If an operation is carried out on a resource which
does not exist, this resource is created.
In our running example the initialization is done before the filter action Trace
or the first continue action is executed.

2. Execution: For each edge involved in a conflicting path, we execute the
operations on the conflicting resources. These are carried out on the AVM,
and this AVM will update its state accordingly. The execution of the oper-
ations has to be done immediately and atomically, after the filter actions,
conditions and such have been executed or evaluated.
In the example, the execution step is carried out if the edge with label
< args.read > attached is taken. This corresponds to the execution of oper-
ation read on resource args. The result: OperationSequence(args) = read.
The execution step is also executed for the edge with label < args.encrypt >
attached is taken. This corresponds to the execution of operation encrypt on
resource args. Resulting in: OperationSequence(args) = read encrypt.

3. Evaluation: If we reach the end of the execution path, we have to signal
the AVM to verify that the rules still hold for the given execution path.
We have encountered a conflict if any of the conflict rules match. In such a
case we can alert the user, e.g. via a message or an exception. At the end
of a join point we verify that: ∀confrule ∈ ConflictRules(rsrc) • rsrc ∈
ConflictingResources ∧ confrule ∩
OperationSequence(rsrc) �= ∅.
In the example case, this will occur after the edge, that is labeled
< args.encrypt >, is taken. A conflict has been detected if the conflict rule
matches.

The above process has to synchronize all conflict paths. Thus, start monitoring at
the beginning of the first conflicting path. Similarly, at the end of the execution,
the evaluation phase has to be performed at the correct time. To reduce the
complexity of this, we could easily initialize the VM at the start of the join
point. Similar, we could simply check at the end of the join point execution.
However, these simplifications might impose a larger runtime performance hit.

Another option would be to verify the rules continuously. This would pro-
vide possibly earlier detection of the conflict. However, the runtime performance
might also be decreased, due to the abundance of verifications.

48 P. Durr, L. Bergmans, and M. Aksit

5 Related Work

There is a lot of work on static analysis of AOP languages. Most of these limit
themselves to detecting interaction. In some cases even the presence of a shared
join point is considered a issue.

One approach to program verification is to utilize traditional model checking
techniques. Krishnamurthi et. al. propose one such approach in [5]. The paper
considers the base program and aspects separately. The author state that a set
of desired properties, given a pointcut descriptor, can be verified by checking
the advice in isolation, thus providing modular reasoning. The paper focuses on
ensuring that the desired properties are preserved in the presence of aspects, in
other words, the situation where applying aspects causes the desired properties of
the base system to be invalidated. The paper only considers aspect-base conflicts
and not conflicts between aspects.

In [6], Katz et. al. propose an approach to use model checking to verify as-
pects modularly. The authors create a generic state machine of the assumptions
of an aspect. If the augmented system, the generic system machine with the as-
pect applied, satisfies certain desired properties, then all base systems satisfying
the assumptions of the aspect will satisfy the desired properties. The proposed
technique has several limitations, for example the restriction to a single aspect
and pointcut designator, and thus can only detect base-aspect conflicts, and not
conflicts between aspects at shared join points.

Another aspect verification approach is based on graph transformations. In
[7], Staijen and Rensink model, part of, the Composition Filters behavior with
graph based semantics. The result is a state space representation of the execution
of the composed filter sequence at a shared join point. The paper proposes an
interference detection approach based on the ordering of filter modules on this
resulting state space. If the different orderings of the filter modules result in
different state spaces, the program is considered to have a filter module (advice)
composition conflict. This approach also detects aspect-aspect conflicts, but only
detect an interaction. There is no way to state whether such an interaction
desirable or undesirable.

In several papers (e.g. [8] and [9]), Südholt et. al. present a technique to
detect shared join points, based on similarities in the crosscut specification of
the aspects involved. If there is no conflict the aspects can be woven without
modification, else the user has to specify the order in which the aspects should
be composed. The approach does not consider the semantics of the advice on
inserts, it just considers the presence of a shared join point to be an interaction.

There is also a lot of work about runtime verification of systems. However,
these techniques are not immediately suitable for AOP languages, as these lan-
guages implement new constructs and can alter the base system even during
runtime. This makes it harder to statically instrument or verify the base sys-
tem and to know the exact composition of all elements. Nonetheless, especially
for dynamic AOP approaches, providing runtime verification of advice and the
composition of advice is important.

Static and Dynamic Detection of Behavioral Conflicts Between Aspects 49

The notion of using resources and operations on these resources to model
dependencies and conflicts has already been applied in many different fields in
software engineering, e.g. for synchronization constraints [10] and for transaction
systems[11].

6 Conclusion

The presented approach does not only provide feedback in an early stage of soft-
ware development, i.e. while writing and compiling the aspect, it also provides
an optimized way of checking whether certain conditional or dynamic conflicts
actually occur at runtime. We only monitor those cases where it is known that
a conflict could occur, but can not be completely statically determined. The
declarative language of Composition Filters enables us to only verify those com-
binations that may lead to a conflict. It also enables us to reason about aspects
without detailed knowledge of the base code, i.e. we only need to know the join
points of the system, thus providing some form of isolated reasoning. Currently,
only static verification has been implemented, in Compose*. However, we do
plan to implement the proposed runtime extension in the near future.

This work has been partially carried out as part of the Ideals project un-
der the responsibility of the Embedded Systems Institute. This project is par-
tially supported by the Netherlands Ministry of Economic Affairs under the
Senter program. This work is supported by European Commission grant IST-2-
004349: European Network of Excellence on Aspect-Oriented Software Develop-
ment (AOSD-Europe).

References

1. Durr, P., Bergmans, L., Aksit, M.: Reasoning about semantic conflicts between
aspects. In: Chitchyan, R., Fabry, J., Bergmans, L., Nedos, A., Rensink, A. (eds.)
Proceeding of ADI 2006 Aspect, Dependencies, and interactions Workshop, Lan-
caster University, pp. 10–18 (July 2006)

2. Durr, P.E.A., Bergmans, L.M.J., Aksit, M.: Reasoning about behavioral conflicts
between aspects. Technical Report TR-CTIT-07-15, Enschede (February 2007)

3. Group, T.O.: IEEE: Regular expressions. The Open Group Base Specifications,
IEEE Std 1003.1 (6) (2004)

4. de Roo, A.: Towards more robust advice: Message flow analysis for composition
filters and its application. Master’s thesis, University of Twente (March 2007)

5. Krishnamurthi, S., Fisler, K., Greenberg, M.: Verifying aspect advice modularly.
In: SIGSOFT 2004/FSE-12: Proceedings of the 12th ACM SIGSOFT twelfth in-
ternational symposium on Foundations of software engineering, pp. 137–146. ACM
Press, New York, USA (2004)

6. Goldman, M., Katz, S.: Modular generic verification of ltl properties for aspects.
In: Clifton, C., Lämmel, R., Leavens, G.T. (eds.) FOAL: Foundations Of Aspect-
Oriented Languages, pp. 11–19 (March 2006)

7. Staijen, T., Rensink, A.: A graph-transformation-based semantics for analysing
aspect interference. In: Workshop on Graph Computation Models, Natal, Brazil
(2006)

50 P. Durr, L. Bergmans, and M. Aksit

8. Douence, R., Fradet, P.: Trace-based aspects. In: Filman, R.E., Elrad, T., Clarke,
S. (eds.) Aspect-Oriented Software Development, pp. 201–217. Addison-Wesley,
Boston (2005)

9. Ségura-Devillechaise, M., Menaud, J.M., Fritz, T., Loriant, N., Douence, R.,
Südholt, M.: An expressive aspect language for system applications with arachne.
Transactions on AOSD I 1(1), 174–213 (2006)

10. Bernstein, A.J.: Program analysis for parallel processing. In: IEEE Trans. on Elec-
tronic Computers. EC-15, pp. 757–762 (1966)

11. Lynch, N.A., Merritt, M., Weihl, W.E., Fekete, A. (eds.): Atomic Transactions: In
Concurrent and Distributed Systems. Morgan Kaufmann, San Francisco (1993)

Escaping with Future Variables in HALO

Charlotte Herzeel, Kris Gybels, and Pascal Costanza

Vrije Universiteit Brussel
{charlotte.herzeel|kris.gybels|pascal.costanza}@vub.ac.be

1 Introduction

HALO is a novel aspect language introducing a logic-based pointcut language
which combines history-based pointcuts and “escape” conditions for interact-
ing with the base language. This combination is difficult to support when escape
conditions access context exposed by “future” join points. This paper introduces
a weaving mechanism based on copying objects for resolving such pointcuts.
Though this seems a memory consuming solution, it can be easily combined
with HALO’s analysis for reducing the join point history. Furthermore, point-
cuts with escape conditions accessing future join point context, sometimes re-
quire less memory than pointcuts that don’t, but otherwise implement the same
functionality. In this paper, we illustrate this by measuring memory usage for
simulations of an e-commerce application, switching between an implementation
where the pointcut definitions contain escape conditions referring to future join
point context, and an equivalent implementation that doesn’t.

2 HALO by Example

In this section we give a brief introduction to HALO. HALO is a novel logic-
based aspect language for CLOS [1], extending our previous work on logic-based
AOP [2] with support for history-based aspects.

As a running example, we use an e-commerce application. This application,
implemented using the Hunchentoot web application framework, was reported on
in earlier work [3] and is used in the experiments in Section 4.2. For explanation,
we use the simplified version of this application as shown in Figure 1. The classes
Shop, User and Article model the e-shop, its customers and the sold articles
respectively. A class Promotions simply maps articles to a discount rate, which
can be changed using the method set-rate, and accessed with current-rate-for.
The method singleton-instance is used to retrieve the Promotions class’ only
instance.

HALO is a logic-based pointcut language, meaning pointcuts are expressed as
logic queries over logic facts giving information about join points. Two features
of HALO are important for this paper. Firstly, it is history-based, meaning
the pointcuts are not just about the “current” join point, but also about past
join points. Secondly, HALO is not purely logic-based: it features an “escape”
mechanism which allows methods to be called from the logic pointcuts. Space
does not permit us to give a detailed discussion of HALO, we refer to earlier

O. Sokolsky and S. Tasiran (Eds.): RV 2007, LNCS 4839, pp. 51–62, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

52 C. Herzeel, K. Gybels, and P. Costanza

Shop Article

+ checkout(): void
+ login(): void
+ buy(Article): void

User Basket1

1

*

1

*

*
1

+ current-rate-for(Article)
+ set-rate(Article, Double)
+ singleton-instance()

Promotions

*

*

* 1

Fig. 1. Overview of the e-shop running example

work for a lengthier explanation [3] , but here we illustrate HALO by means of
a few advice definitions for the running example.

Figure 2 shows an example piece of advice using the two important features
mentioned above. The piece of advice expresses that logging should happen
when customers buy an article for which a promotion was advertised when the
customer logged in to the e-shop. In more detail, the piece of advice consists of
an advice body, which simply calls the log function, and a pointcut that specifies
when to execute the advice body1.

An advice body is executed each time the conditions expressed by the pointcut
are satisfied by the current join point. For this example, this means the current
join point must represent a call to the method named “buy” and before that call,
a join point representing a call to the method “login” must have occured. This
“before” is expressed by means of the temporal operator most-recent, which is
one of the three built-in temporal connectives in HALO - the others are all-past

and since. Also note the escape condition in the pointcut. Its second argument is
a piece of Lisp code that accesses the discount rate ?rate for an article ?article.

Figure 2 also depicts a sample base program, to the right. It shows a user
<kris> logging in and purchasing a <cd>2; In addition we see that the discount
rate of the <cd> is changed from 10 to 5 percent. When the fourth statement is

; advice
(at
; pointcut 1. (set-current-rate <promo> <cd> 0.10)

((gf-call buy ?user ?article) 2. (login <kris>)
(most-recent 3. (set-current-rate <promo> <cd> 0.05)

(gf-call login ?user) 4. (buy <kris> <cd>)
(escape ?promo (singleton-instance Promotions))
(escape ?rate (current-rate-for ?promo ?article))))

; advice body
(log "user ~s gets a ~s % discount" ?user ?rate))

Fig. 2. HALO: combining temporal pointcuts with “escape”

1 CLOS’s and HALO’s syntax are based on s-expressions: the generic function call
(buy r x y) corresponds to r.buy(x,y) in Java, while the HALO logic condition
(gf-call 1 ?x) corresponds to gf-call(1, X) in Prolog.

2 The notation <id> is used to represent objects. E.g. <kris> is an instance of the
class User, and <promo> of the class Promotions.

Escaping with Future Variables in HALO 53

executed, all conditions in the pointcut are satisfied and the message “<kris>
gets a 0.10 % discount” is logged. It’s important to note that the discount rate
will be the rate at the time <kris> logged in, not at the moment he buys the
article – otherwise the escape condition should have been placed outside of the
temporal operator. This is called stateful evaluation of pointcuts. This seems
technically difficult, because the discount rate ?rate needs to be computed when
the login join point occurs, but the article ?article for which to compute the
discount rate is only known at the “future” buy join point. The remainder of the
paper explains how this works in HALO in more detail.

3 The HALO Weaver

In this section we first further discuss how the join point history is actually
produced and stored. We discuss the details of the HALO weaver and the specific
mechanism we use for matching history-based pointcuts combined with “escape”
conditions referring to “future” join point data. This mechanism is based on our
own extension of the well-known Rete algorithm [4].

3.1 Weaving Schema

In aspect-oriented programming (AOP), the process that is responsible for inte-
grating aspects and base code, is called the “weaver”, and this section sketches
the basic workings of the HALO weaver. The HALO weaver is an extra layer
on the CLOS compiler/interpreter for processing HALO code. A schema of the
weaving process is depicted in Figure 3. The black boxes represent the differ-
ent weaver components, whereas the transparent boxes reflect the CLOS and
HALO code respectively. The arrows depict the flow of the weaving process. As
the CLOS program runs, the weaver intercepts join points, and for each of these,
a representation as a logic fact is recorded (in the figure, each statement of the
CLOS program is mapped to such a logic fact). Each time a logic fact is added
to the fact base, the “query engine” is triggered to find solutions for all the
pointcuts; A solution for a pointcut consists of bindings, mapping all variables
in the pointcut to a concrete value, and they are obtained by trying to pattern
match the conditions of the pointcuts to the facts in the “fact base”. Next, each
pointcut solution is used to replace the logic variables in the advice code associ-
ated with the pointcut. As such, the advice code can be executed and inserted
in the flow of the CLOS program.

In the actual implementation of the HALO weaver, the fact base and query
engine are one component. More specifically, the HALO query matching process
is based on the Rete forward chaining algorithm. A full motivation for this choice
is outside the scope of this paper, but we do note that due to its pre-evaluation
of partial queries and caching strategies, the Rete algorithm greatly simplifies
the stateful evaluation of escape conditions, and that it has been shown to be
a very efficient algorithm [4]. In the next section we discuss how (an extended
version of) the Rete algorithm works for matching HALO pointcuts to join point
facts.

54 C. Herzeel, K. Gybels, and P. Costanza

fact generator

query engine

1:(create User <kris>)
2:(gf-call 'login <kris>)

fact base1: (make-instance 'user)
2: (login <kris>) CLOS

(at
 (gf-call login ?user)
(print "~s logged in" ?user))

HALO(print "<kris> logged in")

Fig. 3. HALO weaving schema

3.2 Matching Pointcuts

The Rete algorithm [4] represents queries – or pointcuts in HALO– as a net-
work consisting of nodes with memory tables. For each condition in a pointcut,
the network contains a “filter” node. For each logical connective (the logical
“and”, most-recent, since or all-past), the network contains a “join node”. As
an example, consider the pointcut and Rete network in Figure 4. The circle-
shaped filter nodes coincide with the two conditions in the pointcut, whereas
the square-shaped join node reflects the most-recent operator. Note that each
node is associated with a “ memory table”.

mr

<cd>

?articlegf-call

<kris>4

?user'buyT1

<cd>
?article?rate

0.05 <kris>4
?userT4

...

<cd>
?article?rate

0.05 <kris>4
?userT3

'login

<kris>2

?userT2

(current-rate-for (single...) ?article)

((gf-call buy ?user ?article)
 (escape ?rate
 (current-rate-for
 (singleton-instance Promotions) ?article))
 (most-recent (gf-call login ?user)))

Fig. 4. Rete representation of “escape”

mr

<cd>

?articlegf-call

<kris>4

?user'buyT1

<cd>
?article?rate

0.10 <kris>4
?userT6

?promo
<promo><cd>

?article?rate
0.10 <kris>4

?userT4

'login

<kris>2

?userT2

'copy

<promo>2

?objectT3

1. (set-current-rate <promo> <cd> 0.10)
2. (login <kris>)
3. (set-current-rate <promo> <cd> 0.05)
4. (buy <kris> <cd>)

?user
<kris> <promo>2

?promoT5

Fig. 5. Copying object state in Rete

A full explanation of the Rete networks and our extensions are beyond the
scope of this paper, but using the typical graphical representation of a Rete
network (cfr. Figure 4) a basic understanding of its operation can be given as:
facts are inserted in the “top” of the network, the filter nodes, and these facts
“trickle down” the network. When the weaver generates a fact such as (gf-call
’login <kris>), this is inserted in all filter nodes. A filter node for a condition
such as (gf-call ’login ?user) checks that all the non-variable arguments

Escaping with Future Variables in HALO 55

of the fact and condition match. In this case, it checks that the name of the
operation is login in both. It also binds the logical variable ?user to the value
<kris>. Two things then happen: an entry is made in a table, the so-called
memory table of the node, to memorize this binding. The binding is also passed
down to the next node in the network, a join node. Join nodes have two incoming
nodes connected to them. Whenever they receive a new binding from one node,
they combine these with the memorized bindings of the other node. This involves
ensuring that the bindings have the same values for the same variables. If this is
the case, they similarly make an entry in a memory table and pass the bindings
to the next node. In our extension of Rete, the join nodes represent temporal
conditions and also check these conditions before making new entries. We will
not delve into further depth here, but for example a node for a most-recent
operator will check that only the combination using the most recently created
matching bindings is made.

We focus in this paper on the “escape” feature of HALO, and our experiments
with a number of different implementations of this feature. This is specifically re-
lated to allowing the use of “future” variables in escape conditions. The problem
is that an escape condition such as (escape ?rate (current-promotion-for
?promo ?article)) implies invoking the Lisp function current-promotion-for.
For this to be possible, all of the logic variables used in the condition should have
a value, but there can be conflicts between the availability of these values and the
right time to evaluate the Lisp function. The different implementations define dif-
ferent variations of the HALO language and/or the weaver’s operation.

No future variables. This is the simplest HALO variation. In this version an
escape condition that is inside a temporal operator is limited to using the fol-
lowing variables: variables used in logic conditions or as the result variable of
other escape conditions, but only if these conditions are also inside the tem-
poral operator (including any conditions in a nested temporal operator). This
restriction disallows “future” variables: variables that are given values only by
conditions outside the temporal operator. The semantics of escape conditions
inside a temporal operator is that the Lisp function they invoke is invoked at the
moment the logic conditions inside the same operator are matched. In the Rete
networks for pointcut matching, an escape condition is therefore represented as
a node taking as input one of the nodes representing the logic conditions, and
is connected to the join node representing the temporal operator. In Figure 4,
the diamond-shaped node represents the escape condition in the pointcut in the
same figure.

Future variables, argument copying. To increase the expressive power of HALO,
we are investigating how the use of future variables in escape conditions can be
allowed. The conflict this creates is that invocation of the Lisp function has to
be postponed until the future variables are given a value. But at the same time,
if the values of the other variables are objects, the state of these objects may
be changed by the time the future variable is given a value. The result of the
Lisp function may then not be the same as the case where it is invoked before

56 C. Herzeel, K. Gybels, and P. Costanza

these changes are made. Consider the pointcuts in Figure 4 and Figure 2: both
capture an invocation of buy after an invocation of login and determine the
discount rate of the bought article. But in the first case, this should be the rate
at the time the buy invocation happens, and in the other at the time the login
invocation happens. These can be different, as the rate can be changed between
these invocations (using set-rate as explained in Section 2). In Figure 2, the
?article variable is a future variable for the escape condition, because it will
only be given a value outside the most-recent operator. The escape can only
be evaluated when the buy happens, but of course, it should still return the rate
at the time of login. To solve this, this variation of HALO takes copies of the
arguments that will be passed to the Lisp function. In the example of Figure 2,
the value of ?promowill be copied when the login happens, the escape condition
is evaluated when the buy happens, but with the copied state of the Promotions
object and will thus return the right rate. Figure 5 displays the Rete network for
the pointcut in Figure 2. In order to keep track of the object copies, the escape
node is extended with an extra memory table.

Future variables, state change copying. Argument copying only works when the
invoked Lisp function only depends on its arguments, and not on global variables.
A further variation of HALO takes this into account with a more extensive
copying strategy. In this strategy, the state changes of all objects are intercepted,
by making a copy of an object whenever the object is changed. Next the CLOS
slot access protocol is extended to retrieve this copy whenever the object’s field
is read for evaluating the escape condition.

4 Optimizing Memory Usage in HALO

An apparent drawback of history-based AOP is exactly the need to store the his-
tory. A straightforward implementation of the weaver scheme in Figure 3 would
mean a quickly growing history needs to be kept forever. Several techniques can
be used to optimize this history. In this section, we first classify these techniques
according to the kind of history information they remove. We first further detail
how HALO deals with the last kind of information, and then explain the impact
of the escape extension.

Irrelevant facts. Some join point facts are not relevant to generate in the first
place, because they will simply never be used to match pointcut definitions. For
example, if there is only a pointcut capturing calls of the “buy” function and
not of the “login” function, there is no need to generate join point facts for
calls to the “login” function at all. This can be handled with static optimisation
techniques, known as shadow weaving [5]. This is not currently done in HALO,
but these techniques are orthogonal to those needed for the next two categories.

Facts relevant for one time step only. Some information is only relevant for one
step in the program execution. A pointcut that captures calls to “buy” if there
was a past call to “login” with matching variables, only requires the weaver to

Escaping with Future Variables in HALO 57

store a history of “login” calls, but not of “buy” calls. In HALO, this is handled
by the same technique as for the next category.

Facts that become irrelevant. The last kind of information is the one more at-
tention is paid to in HALO research. This is information that becomes irrelevant
after a while. Suppose we have a pointcut that captures calls to “buy” with a cer-
tain user and article as argument, and which also gets the discount rate of that
article at the most recent call to “login” for the same user. In this case, a history
of “login” calls needs to be kept. But since only the most recent call for a partic-
ular user is accessed by the pointcut, parts of this history can be removed as the
same user logs in again. This is handled in HALO by “memory table garbage
collection” of the Rete nodes. The garbage collection is actually performed as
part of the functionality of the nodes, there is not a separate algorithm like in
memory garbage collection that intervenes once in a while. Though it can be
turned on and off, and for explanative purposes we consider it separately from
an explanation of node functionality.

4.1 Escape Nodes in Memory Table Garbage Collection

A full explanation of the memory table garbage collection is beyond the scope of
this paper, but it can be illustrated with an example: consider the pointcut and
Rete in Figure 6. The black tables labelled “LT”, next to the memory tables, dis-
play the “life time” of memory table entries. The life time of a memory table entry
consists of the time at which an entry was created and the time at which the entry
can be removed. An entry can be removed as soon as it cannot be used anymore
to derive new conclusions. The decision to remove a memory table entry depends
on whether the node the entry belongs to is the input of a most-recent or all-past
temporal join node. For example, the filter node labelled 1 in Figure 6 is not the
right input of one of these types of temporal join nodes. This means that entries
in this node will never be accessed to derive new conclusions after they’re first in-
serted. The same is true for the nodes labelled 4, 5 and 6. As such, the life time
of the entries residing at these nodes is constrained to one time step in Figure 6.
If however the entry resides in a node that is the right input of a temporal join
node, then it can only be removed if it is “replaced” by a new entry. For example,
entries in the right input of most-recent join nodes can be removed when new en-
tries with the same values for the memory table variables are added. In fact, only
the values for the variables that are in common with the left input memory table
need to be the same. This is because when an entry is added to the left input’s
memory table, the join node will combine it with the most recent matching en-
try in the right input node. The match requires that the values for the variables
in common between the two input nodes are the same. Thus, if there is an older
entry in the right memory table that also matches with the new entry in the left,
it will still not produce a combination. Thus, such entries can be removed. E.g. in
Figure 6, when the second entry in the node labeled 2 is added, the first entry is
deleted, since it hase the same value <kris> for ?user.

The above scheme was developed for the version of HALO with escape con-
ditions that cannot refer to future variables. But this extension did not require

58 C. Herzeel, K. Gybels, and P. Costanza

(login <kris>)
(buy <kris> <dvd>)
(login <kris>)
(buy <kris> <cd>)
(checkout <kris>)

join points

1 2 3

mr
T2 < T1, !

4 ap
T3 < T1

5

since
T3 > T2

6

<kris>

?usergf-call

5

checkoutT1
[5, 5]

LT

3 <kris>

<kris>

?usergf-call

1

loginT2

[3, ..]
[1, 2]

LT

<cd>4 <kris>

?article

<dvd>

gf-call

<kris>2

?userbuyT3

[4, 3]
[2, 3]

LT

<cd>5 <kris>

?user
<kris> <dvd>5

?articleT5

[5, 5]
[5, 5]

LT

?user
<kris>5

T4
[5, 5]

LT

?user
<kris> <cd>5

?articleT6
[5, 5]

LT

((gf-call checkout ?user)
(since (most-recent (gf-call login ?user))
 (all-past (gf-call buy ?user ?article))))

Fig. 6. Lifetime of memory table entries when garbage collected

a fundamental change to the above scheme. For escape nodes whose condition
uses a future variable, a table needs to be kept with copies of the values of the
bindings that the node takes as input, for later evaluation. The key point is how-
ever that these entries are completely linked to the entries of the escape node’s
input. Therefore, the entry in the escape node’s memory can be removed when
the parent entry in its input node is removed.

4.2 Benchmarks

We have evaluated the effect of the “escape” extension on memory usage using
a few simulations. These were run on the e-commerce application implemented
on top of the Hunchentoot web application framework [3]. The pointcuts used
in this application can be written in different ways, with or without the use of
future variables in escape conditions. To illustrate, consider for example the two
pointcuts below. They both implement the same functionality, namely comput-
ing the discount rate active at login for an article bought at a later time. The
first version however does not make use of a future variable. Instead, it is ensured
that the ?article variable already gets a value when the buy happens, by using
an all-past to get all possible articles. In contrast, in the second pointcut in
the code listing, the variable ?article is a future variable. The Rete networks
for matching both pointcuts are depicted in Figure 8.

((gf-call buy ?user ?article)
(most-recent
(gf-call login ?user)
(escape ?promo (singleton-instance Promotions))
(all-past (create article ?article))
(escape ?rate (current-rate-for ?promo ?article))))

((gf-call buy ?user ?article)
(most-recent
(gf-call login ?user)
(escape ?promo (singleton-instance Promotions))
(escape ?rate (current-rate-for ?promo ?article))))

Escaping with Future Variables in HALO 59

0 2,000 4,000 6,000 8,000

S3 copy

S3 non copy

S2 copy

S2 non copy

S1 copy

S1 non copy

nr of memory
table entries
still allocated

total nr of
memory table
entries ever
made
nr of
generated join
point facts

Fig. 7. Benchmarks for the memory table garbage collection

Each simulation defines a different number of articles, customers etc. and
subsequently lets the customers randomly login, checkout their basket etc. for
a number of times. Figure 7 depicts the total number of memory table entries
made, and how many were already removed at the point the simulation stopped.
In total, three different scripts were selected and run for two sets of aspects
(see the labels S1 − S3 denoting the different scripts and (non)copy denoting a
different set of aspects). Both sets of aspects implement the same functionality,
but in one version the aspects are rewritten to make use of the extended version
of “escape”, referring to “future” join point data.

Figure 8 also displays a sample base program and the content of the memory
tables obtained after executing this program. As is to be expected, the network
for the first pointcut contains many more entries: each time a login occurs, the
promotion rate for all articles is computed and cached. However in the second
network, at each login, a copy of the <promo> object is cached. Note that the
second network keeps track of much less memory table entries than the first.
A surprising conclusion is therefore that if the memory cost for a copy of the
Promotions object is lower than the memory cost for keeping the many entries
in the first nework, then the escape condition accessing future join point data
is woven less costly. We found this to be actually the case in our current shop
application, as the Promotions object is implemented as a hash table mapping
articles to discount rates. A copy of this table takes up less memory space than
a Rete memory table holding the combinations of ?article, ?user, ?promo and
?rate as is the case for the highlighted node in Figure 8. Of course, this does not
mean that this is a general conclusion about the Rete networks, as this depends
on the specific application and its implementation.

60 C. Herzeel, K. Gybels, and P. Costanza

mr

<cd>

?articlegf-call

<kris>5

?user'buyT1

'login

<kris>4

?userT2

3 <game>

<dvd>2

'create

<cd>1

?articleT3

ap

?user
<kris> <promo>4

?promoT3

<promo><kris>4 <game>
4 <dvd><kris> <promo>

?article
<cd>

?user
<kris> <promo>4

?promoT4

<promo><kris> <game> 0.204
<kris>4 0.00<dvd><promo>

?rate
0.05

?article
<cd>

?user
<kris> <promo>4

?promoT5

?rate
<0.05>

?article
<cd>

?user
<kris> <promo>5

?promoT5

<cd>

?articlegf-call

<kris>5

?user'buyT1

'login

<kris>4

?userT2

?user
<kris> <promo>4

?promoT4

mr

...

?rate
0.05

?article
<cd>

?user
<kris> <promo>5

?promoT5

copy

<promo>4

?promoT3

?rate
0.05

?article
<cd>

?user
<kris> <promo>5

?promoT5

Fig. 8. Rete for pointcut avoiding the use of future variables (left) and Rete for pointcut
using future variable “?article” (right)

Due to the fact that the HALO query engine records partial solutions to
pointcuts, we need to take into account that additional memory is required for
recording join point facts. However Figure 7 shows that the entries in the memory
tables of join nodes, which represent the latter partial solutions, are also greatly
reduced by the memory table garbage collection process (see second block for
each simulation, where black is used to denote the remaining number of entries).
Overall this means that for each join point fact that was or is memorized, the
Rete network (temporarily) keeps track of partial solutions making use of it.
However this is an improvement over recording all join point facts forever.

5 Related Work

Alpha [6] is a Prolog-based aspect language (for a Java-like language) for ex-
pressing pointcuts over the join point history. The language provides a built-in
set of temporal relations for comparing time stamps of join points, but the pro-
grammer can define new ones. Interaction with the base language is allowed, but
only for the “current” join point. Alpha’s weaver performs a static analysis of
source code to determine whether join point facts are necessary to generate for
matching pointcuts, and at what time they can be removed from the join point
history. Currently, this technique only removes join point facts when these are
just used for matching pointcuts about the “current” join point. Other facts are
kept indefinitely. Hence Alpha falls into the second category from Section 3.2.

Tracematches [7] is an AspectJ extension in which program traces can be
formulated as regular expressions over “symbols”. These symbols are AspectJ
pointcuts containing “free variables”, referring to join point context. The base

Escaping with Future Variables in HALO 61

level can be accessed through the “let” construct, but currently it is only allowed
to refer to join point context exposed by its enclosing symbol. The Tracematches
weaver does shadow weaving and performs a three staged static analysis to
reduce the set of join point shadows [7]. As such, this falls in the first category
defined in Section 3.2. Shadow weaving is orthogonal to the dynamic analysis
technique in HALO, and we plan to extend the HALO weaver with shadow
weaving in the near future.

6 Conclusions and Future Work

In this paper we’ve given an initial discussion of the use of “future” variables
in escape conditions in the logic pointcut language HALO, and the relation
to HALO’s implementation using Rete networks, including how these fit into
the memory table garbage collection scheme we previously developed for HALO
without this feature. Supporting the feature involves copying objects to postpone
the evaluation of these escape conditions. In the last part of the paper we pre-
sented benchmarks for the memory table garbage collection, showing the impact
of the “escape” extension. Surprisingly, pointcuts written by means of this ex-
tension sometimes require less memory than their equivalents that don’t. Future
work consists of investigating the question of whether the Rete networks can be
designed so that these differences can be removed. For example, by postponing
computation of memory table combinations. There’s also a need to further study
the different ways in which pointcuts with a same behavior can be implemented
in HALO, and the impact on memory usage.

Acknowledgements

This work was supported in part by the AOSD-Europe Network of Excellence, Eu-
ropean Union grant no. FP6-2003-IST-2-004349. Charlotte Herzeel is funded by a
doctoral scholarship of the Institute for the Promotion of Innovation through Sci-
ence and Technology in Flanders (IWT-Vlaanderen), Belgium. Pascal Costanza
is funded by the Institute for the Promotion of Innovation through Science and
Technology in Flanders (IWT-Vlaanderen).

References

1. Bobrow, D., DeMichiel, L., Gabriel, R., Keene, S., Kiczales, G., Moon, D.: Common
lisp object system specification. Lisp and Symbolic Computation 1(3-4), 245–394
(1989)

2. Gybels, K., Brichau, J.: Arranging language features for more robust pattern-
based crosscuts. In: Proceedings of the Second International Conference on Aspect-
Oriented Software Development (2003)

3. Herzeel, C., Gybels, K., Costanza, P.: Modularizing crosscuts in an e-commerce
application in lisp using halo. In: proceedings of the International Lisp Conference
(ILC) (2007)

62 C. Herzeel, K. Gybels, and P. Costanza

4. Forgy, C.L.: Rete: A fast algorithm for the many pattern/many object pattern match
problem. Artificial Intelligence 19(1), 17–37 (1982)

5. Masuhara, H., Kiczales, G., Dutchyn, C.: A compilation and optimization model for
aspect-oriented programs. In: Hedin, G. (ed.) CC 2003 and ETAPS 2003. LNCS,
vol. 2622, Springer, Heidelberg (2003)

6. Ostermann, K., Mezini, M., Bockisch, C.: Expressive pointcuts for increased modu-
larity. In: European Conference on Object-Oriented Programming (2005)

7. Bodden, E., Hendren, L., Lhoták, O.: A staged static program analysis to improve
the performance of runtime monitoring. Technical report, ABC Group (2007)

Runtime Verification of Interactions: From

MSCs to Aspects

Ingolf H. Krüger1, Michael Meisinger2, and Massimiliano Menarini1

1 Computer Science and Engineering Department
University of California, San Diego

La Jolla, CA 92093-0404, USA
{ikrueger,mmenarini}@ucsd.edu

2 Institut für Informatik
Technische Universität München

Boltzmannstr. 3, 85748 Garching, Germany
meisinge@in.tum.de

Abstract. Runtime verification is one systematic strategy for analyti-
cal quality assurance of complex distributed systems. Model-based devel-
opment approaches are promising in this context because they provide
models of manageable size and complexity describing the systems under
development, enabling systematic engineering processes for all develop-
ment phases on various levels of detail. For runtime verification, execut-
ing implementations are monitored continuously for correctness against
the specification. This requires the insertion of monitors into the software
under test to gather information on system states and their evolution. In
this paper we describe how we use aspect-oriented development techniques
to enhance existing code with runtime monitors checking the interaction
behavior of applications against their specifications. We use Message Se-
quence Charts (MSCs) to specify the interaction behavior of distributed
systems and as basis for automatic runtime monitor generation. This
uniquely ties interaction interface specifications with the monitoring
infrastructure for their realization. We explain the monitor generation pro-
cedure and tool set using a case study from the embedded automotive sys-
tems domain, the Central Locking System (CLS).

1 Introduction

Designing complex distributed systems is a difficult task. They appear in appli-
cation domains such as avionics and automotive control as embedded systems, as
well as in telecommunications and business information systems. Sensor networks
and mobile applications are growing fields where we find complex distributed
systems. A property common across different applications is that distribution
and complex interactions between system components are key enablers of their
success. Distribution enables the creation of more modular and decentralized
system architectures, contributing, for instance, to fault tolerance, component
reuse, system robustness and maintainability.

O. Sokolsky and S. Tasiran (Eds.): RV 2007, LNCS 4839, pp. 63–74, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

64 I.H. Krüger, M. Meisinger, and M. Menarini

However, distributed systems can become highly complex and challenging to
develop. The number of states and conditions increase exponentially with the
number of distributed components. Distribution also causes significant logistics
and maintenance problems. Components can be developed, maintained, extended
and replaced independently, potentially harming the overall system integrity and
consistency.

1.1 Problem Definition

Model-based development is a promising approach addressing the difficulties
and complexities in system development; it covers all phases from requirements
analysis to system execution [3]. Models provide views of systems and their
designs serving specific purposes at different phases of the development process.
For verification purposes, models provide the specification of a system that an
implementation has to comply with.

Runtime monitoring is a verification strategy (see [6,2,1]) based on the in-
sertion of monitors into runnable software. These monitors, for instance, gather
information on system states and their change, and compare it against the speci-
fication. This type of runtime verification requires addressing two main problems.
First, relating the concrete state of the running system to the abstract one in
the model. Second, instrumenting the running program with code to record the
state of the system and compare it to the expected run.

A simple runtime monitoring approach is to directly implement the monitors
by changing the software source code. The very nature of such monitors, how-
ever, makes such modifications repetitive and scattered across the entire code
base. Aspect-oriented languages [9,8] were introduced particularly to manage
repetitive code changes crosscutting the code. They enable compact represen-
tation of such code modifications. Thus, using aspects to specify such monitors
seams a promising avenue. Fig. 1 illustrates this concept.

Fig. 1. Runtime Monitoring Implementations Against Specification

In this paper, we focus on distributed, loosely coupled systems, where sys-
tem functions typically emerge from interactions between distributed compo-
nents. Runtime verification then needs to check for compliance of the monitored

Runtime Verification of Interactions: From MSCs to Aspects 65

component interactions with the expected communication patterns. We have
developed a specification technique for distributed systems based on Message
Sequence Charts (MSC) [7] capturing interaction patterns and causal commu-
nication relationships between entities. Our models are based on a thorough
formal foundation (see [10,4]) and enable consistent refinement and refactoring.
We make use of these message sequence models for verification and construction
purposes. We apply our state machine synthesis algorithm to obtain state ma-
chines representing the full communication behavior of individual components of
the system. We have applied this strategy, for instance, to test component timing
conformance by runtime monitoring [1], and for efficient evaluation of multiple
architecture candidates through generation of executable prototypes [13,12].

1.2 Contribution and Outline

Our models capture the communication patterns between nodes in distributed
systems; this leads to a natural interface for runtime monitors. In fact, the com-
ponent state of our specification is determined only by the observed communi-
cation. Therefore, we only need to identify and record all messages exchanged
between nodes and can ignore the exact internal state of each component. This
enables us to leverage aspects for embedding model-generated runtime monitors
into existing implementations at their communication interfaces, independent of
any concrete data structure used in the code to capture the node state.

In this paper, we present a combination of our interaction specification ap-
proach and aspect-oriented technologies for the purpose of efficient generation of
runtime monitors. This significantly increases the efficiency of system verifica-
tion efforts and keeps distributed system implementations uncluttered and easily
modifiable. Our approach thus helps to develop more dependable and maintain-
able distributed systems. To support the approach presented we have developed
a new tool and integrated it with our service-oriented toolchain [14]. We use
our exiting tools to draw interactions as MSCs and generate state machines
from them. The new tool adds the capability of generating monitors encoded as
aspects in AspectJ.

There are several aspect-oriented languages that share similar characteristics
regarding how code is modified by aspects. They extend different languages such
as for example C or Java. We chose to use AspectJ [8], a Java based language,
for its portability and for the ability to cater to different domains. However, the
approach presented in this paper can be applied to any aspect-oriented language.

In Sect. 2, we show how we model the interactions of our running example, the
automotive Central Locking System, using MSCs. In Sect. 3, we present proce-
dures and tools that enable us to automatically generate runtime monitors from
the specification, as illustrated in Fig. 1. We explain how we leverage AspectJ to
weave these monitors into existing distributed Java implementations, supporting
multiple different implementation styles. In Sect. 4, we report on experiences ap-
plying our approach and accompanying tools; we also provide a brief discussion.
Sect. 5 shows related work and Sect. 6 summarizes and provides an outlook.

66 I.H. Krüger, M. Meisinger, and M. Menarini

2 Specification of the CLS Interactions

We need specifications of system interactions for the verification of implementa-
tions. In this section, we show how we model the reactive behavior of the Central
Locking System (CLS) as interaction patterns that will later serve as starting
point for our runtime monitor generation procedure. The CLS is a well-studied
and documented example of one common automotive vehicle subsystem. For rea-
sons of brevity, we present a simplified and abstract adaptation of the CLS. In
this paper, we focus on the CLS functions for locking and unlocking vehicle doors
triggered by a wireless entry device; this involves user identification, signaling by
flashing external lights, and user preset loading for on-board multimedia devices.

The main interacting entities – we call them roles – of the CLS are remote en-
try key fob (KF), controller (CONTROL), lock manager (LM), security module
(SM), lighting system (LS), and database (DB) with driver presets. These logical
entities communicate locally or over the network to provide the above-mentioned
functions. Fig. 2 shows roles and their communication links.

We specify the interaction behavior of the selected CLS functions using a
notation based on Message Sequence Charts (MSC) [7,10,17]. MSCs define se-
quences of messages as arrows between the interacting role vertical axes. Fig. 3
shows the specification of two interaction patterns, which are part of the “Vehicle
Unlocking” function.

The MSC syntax we use should be fairly self-explanatory, especially to read-
ers familiar with UML2 [17]. In particular, we support labeled boxes in our
MSCs indicating alternatives and conditional repetitions (as bounded and un-
bounded loops). Labeled rectangles on an axis indicate actions, such as local
computations; diamond-shaped boxes on an axis indicate state labels. We use
high-level MSCs (HMSCs) for the purpose of specifying flows of interactions,
such as sequences of, alternatives between and repetitions of interactions, in
two-dimensional graphs with MSC references as graph nodes.

The CLS “Vehicle Unlocking” function requires communication through mes-
sage exchange between the key fob and the controller, which, in turn, communi-
cates with the lock manager for physical door unlocking, the lighting system for
flashing the lights, and the security module to validate the driver id. We chose to

CLS Controller

CONTROL

Key Fob

KF

Lock Manager

LM

Lighting System

LS

Security Module

SM

Database

DB

Fig. 2. Logical CLS Entities (Roles) with Communication Links

Runtime Verification of Interactions: From MSCs to Aspects 67

model this function as two separate interaction patterns UNLK-1 and UNLK-2
to show an application of our “join” composition, which uses common messages
for synchronization.

A number of extensions to the standard MSCs warrant explanation [13,10].
First, we take each axis to represent a role rather than a class, object, or compo-
nent. The mapping from roles to components is a design step in our approach and
is described in [13]. This allows us to model our systems on a higher level of ab-
straction independent of any deployment configurations. Furthermore, our MSC
dialect provides an extended set of operators that help us make specifications
smaller and more precise. Examples are operators for specifying preemptions,
liveness properties and synchronized composition. We use the join operator [10]
extensively for composing overlapping interactions, such as the two unlocking
interactions presented in Fig. 3; this operator synchronizes otherwise fully inter-
leaved interactions on their shared messages. We refer the reader to [13,10] for
more details about our specification technique and formal semantics definitions.

KF CONTROL LM LS

INITIAL LCKD INITIAL INITIAL

unlck

unlck

ok

door_unld_sig

UNLDINITIAL INITIAL INITIAL

ok

KF CONTROL SM DB

INITIAL LCKD INITIAL INITIAL

unlck

handle_id

get_id

id

id

INITIALINITIAL UNLD INITIAL

ok

id_handled

 msc UNLK-1 (Operation of Locks & Signaling) msc UNLK-2 (Transfer Driver ID)

Fig. 3. CLS Function “Vehicle Unlocking” Specification with two MSCs

Our MSC-based models provide complete system interaction specifications.
We interpret the MSC specifications – composed and arranged by HMSCs –
universally [10]. This means that our MSCs specify the full set of permitted and
required behaviors, instead of documenting only exemplary runs. Such complete
interaction behavior specifications are the starting point for further system de-
velopment, including deployment on selected target architectures. Furthermore,
we can simulate the model, verify and model-check it, and generate code for
prototypical implementations. Often, however, we want to be able to relax the
universal interpretation of our models enabling verification of partial specifica-
tions. We achieve this by excluding messages not present in the specification
from the verification, enabling us to verify implementations that use a larger set
of messages than the ones captured in the MSCs. A system is deemed correct as
long as the specified messages follow the defined protocol.

68 I.H. Krüger, M. Meisinger, and M. Menarini

3 Generation of Aspect-Oriented Runtime Monitors

Fig. 4 outlines the process and tool-chain for runtime monitoring. It starts
with the availability of an interaction specification; we use our modeling tool
M2Code [1] to specify systems using MSCs. In this work, we are creating run-
time monitors for existing distributed applications written in Java, in order to
verify them against the interaction specifications. Using Java as implementation
language gives us the ability to use AspectJ [8], a Java based aspect-oriented lan-
guage, to instrument programs with the monitors. To embed generated runtime
monitors within such implementations, we have to identify the communication
interfaces of the communicating components in the code. The interfaces should
match the definitions given in the specification.

KF CONTROL LM LS

INITIAL LCKD INITIAL INITIAL

unlck

unlck

ok

door_unld_sig

UNLDINITIAL INITIAL INITIAL

ok

150ms

KF CONTROL LM LS

INITIAL LCKD INITIAL INITIAL

unlck

unlck

ok

door_unld_sig

UNLDINITIAL INITIAL INITIAL

ok

150ms

KF CONTROL LM LS

INITIAL LCKD INITIAL INITIAL

unlck

unlck

ok

door_unld_sig

UNLDINITIAL INITIAL INITIAL

ok

150ms

Fig. 4. Runtime Monitor Generation and Weaving into Implementation

Aspect-oriented languages insert and run code at particular points in the
program called join-points [8]. These languages extend normal programming
languages and allow the definition of a set of join-points (called pointcuts). Ex-
amples of pointcuts match calls to methods with a particular name or from a
particular class, and access to properties. To identify the communication in-
terface of the implementations’ components we need to establish some relation
between method calls and messages sent/received. To this end, we have experi-
mented with different approaches. The approaches that provide most flexibility
are (1) using interfaces to identify methods that send and receive messages, and
(2) using Java annotations to identify these methods.

First, we analyze how to use Java interfaces to identify suitable join-points for
capturing the communication interface. We have to arrange the code such that
each role of the interaction model is implemented by one or more distinct classes
in the program. Message sending and receiving is then performed by calling
specific methods of such a class. When defining pointcuts, we need to have an
interface for each role. A class that performs the communication of such a role

Runtime Verification of Interactions: From MSCs to Aspects 69

implements the interface. For instance, based on the interactions it engages in
in Fig. 3, the interface we define for the keyfob role in our CLS case study is:

public interface IRKF {
public void ok(IRole src);
public void get_id(IRole src); }

Using this implementation strategy enables defining suitable pointcuts in As-
pectJ. Pointcuts identify communication between two roles by identifying meth-
ods calls performed by a class playing one role to a method representing a message.
Examine, for example, the following pointcut:

pointcut pcCONTROL_ok_KF():
call(void IRKF.ok(IROLE)) && this(CLS.roles.IRCONTROL)

&& target(CLS.roles.IRKF);

It defines a pointcut that identifies when the role CONTROL sends the mes-
sage ok to the role KF. The method name matches the message name. The class
that calls the method must implement the sending role interface (IRCONTROL
for the CONTROL role) and the class implementing the receiving role must
implement the receiving role interface (IRKF).

The second approach uses Java annotations to establish suitable pointcuts in
the code to identify the communication interface. Annotations were introduced
in Java version 5 to enable adding arbitrary meta-information to the code. With
annotations we can add information about roles played by classes and messages
transported by methods to the code. This eliminates the need to follow special
naming conventions and class/interface hierarchies. An annotation example is:

@Role("KF")public class CKeyFob {
@Message("get_id") public void get_id(IRole s){ //...

A pointcut for such a programming style to identify the code, where role
CONTROL sends ok to role KF, is:

pointcut CONTROLokKF(Message m,Role s,Role d):
execution(* * (*)) && @this(d) && @annotation(m) &&
cflowbelow(call(* * (*)) && @this(s)) &&
if(m.value()=="ok") && if(s.value()=="CONTROL") && if(d.value()=="KF");

This pointcut, like the previous one, also identifies when the role CONTROL
sends the message ok to the role KF. This definition style for the communication
interface is more flexible at the cost of a more complex definition of the pointcut.
However, the ability to explicitly insert the interface definition into the code,
without the need to encode it using particular naming conventions, is beneficial,
in our opinion, independently from its usage in runtime verification. Therefore,
we recommend to define the roles in the code using this style. Note that in
the approach we present here the user only writes the annotation whereas the
pointcut is generated automatically.

70 I.H. Krüger, M. Meisinger, and M. Menarini

Projection

Interaction

Specification

msc function1

C1 C2 C3

msg1
msg2

Component

Interactions

C1 C2 C3

msg1
msg2

Normalized Component

Interactions

Component

State Machine

C2

msg1
msg2

ON

OFF

Normalization

Optimized Component

State Machine

Synthesis Optimization

ON

OFF

msg1/

/msg2

ON OFF

msg1/msg2

Fig. 5. Component State Machine Generation Process from MSCs

Now that we have established the communication interface and the means to
instrument the program, we need to create the code that monitors the program at
runtime and verifies its compliance to the specification. To this end we generate
monitors (one per role) that contain the implementation of a state machine
defining the acceptable communication interface for the role. The generation of
such automata is based on our synthesis algorithm [11] to transform MSCs into
state machines. We briefly outline the main steps of this transformation here;
we refer the reader to [11] for a complete treatment of the subject. Fig. 5 depicts
the five steps of our algorithm.

The algorithm takes an interaction specification as input in form of a set of
MSCs and HMSCs, as described in Sect. 2. These MSCs need to be consistent
and causal to yield reasonable results. A causal MSC imposes a restriction on
the order of messages exchanged such that the next send/receive action can be
locally determined by each role. This restriction avoids the well-known “non-
local choice” phenomenon of generic MSC specifications [15]. Component state
markers, hexagonal labels depicted in Fig. 3, help to specify a seamless flow of
interactions also in models of larger size. As explained above, we interpret the set
of MSCs universally by applying a closed world assumption when executing our
algorithm. We apply our algorithm for each role in the specification, thus gener-
ating the same number of state machines as there are roles in the specification.
The projection operation restricts the set of messages considered; only messages
sent or received by a single role are used to create its state machine. Therefore,
by projection, we eliminate all interactions not relevant for any given component.
Subsequently we normalize the resulting component-specific interactions. Nor-
malization, for instance, adds missing start and end state markers. The resulting
normalized interactions are the input for component state machine synthesis. We
translate each state label and guard appearing in any of the interactions into
corresponding automaton states. We identify the MSCs as transition paths and
convert all message send/receive events into respective transitions between added
intermediate states. The synthesis algorithm works fully automatic for causal

Runtime Verification of Interactions: From MSCs to Aspects 71

Fig. 6. M2Aspects Screenshot – Generation of AspectJ Runtime Monitors

MSCs and can handle choice, repetition, and concurrency/interleaving [10]. Fi-
nally, we apply optimization algorithms to the resulting state machine. We have
implemented this algorithm in our M2Code tool.

Our algorithm transforms MSCs to state machines without the need for other
intermediate frameworks such as JavaMOP or tracematches. This gives us max-
imum freedom in defining the exact semantics of our MSC dialect and allows us
to ensure that the generated code respects it. To generate the AspectJ code, we
use the tool M2Aspects - Run time monitor generator, depicted in Fig. 6. It takes
the state machines generated by M2Code as input and generates all necessary As-
pectJ files. In particular, the figure shows an example of advice that implements
a transition of the state machine that represents the monitor for the LS role.

The generated monitors observe all messages sent and received by each role.
This is done using advice run when the pointcuts that identify the messages (de-
fined in one of the two styles described earlier) are encountered. The state machine
implemented in the monitor takes the transition corresponding to the message
identified. If, from the current state in the monitor, there is no transition matching
the observed communication, an error is flagged and the verification fails.

4 Evaluation and Discussion

The current translation of our interaction specifications generates state machines
with guarded transitions. Each transition is marked with a message name and a
message direction (send/receive). This allows us to detect duplicated and out-of-
order messages. It is, however, impossible to use this approach to detect missing

72 I.H. Krüger, M. Meisinger, and M. Menarini

messages; we would need to extend the translation to support timeouts besides
capturing causal dependencies.

Our translation procedure assumes deterministic state machines, which en-
able direct inference of the monitoring automaton states from observing the
communication. This greatly simplifies the translation: we can just run the state
machine in parallel with the implementation. With non-deterministic state ma-
chines, we would need to track sets of possible current states and examine all
enabled transitions for a match, complicating the runtime monitor significantly.
However, we are observing message traces, and the language of the traces spec-
ified in our MSC notation is regular. Because it is always possible to find a
deterministic state machine that recognizes a given regular language, we can
restrict ourselves to generating monitors from deterministic state machines.

We have applied our runtime monitoring procedure to a Java implementation
of the CLS specification of Sect. 2. Although the implementation was simple
and straightforward, we were able to detect several interaction related errors
violating the specification, for instance incorrect message orderings and incorrect
causal relations between method calls. We were able to apply runtime monitoring
iteratively while implementing – an example of an automatic test first strategy;
the resulting error messages pointed us to defects in the code, which we could
fix subsequently. The error trace in our implementation logs the sequence of
messages detected from the monitor. In the future we plan to map those traces
back to the MSC that was not satisfied by the run. At no point was the insertion
of the runtime monitors intrusive or obstructing the implementation. We see the
non-intrusiveness as one particular strength of our approach. Implementations
need only slight modifications to match one of the supported styles. Interaction
properties can be specified easily and intuitively using our graphical modeling
tool, M2Code. The automatic runtime monitor generation facility and the aspect
weaving with the implementation work efficiently and smoothly.

Our case study was too simple to conduct extensive performance evaluation
analysis. However, given that we use AspectJ to inject simple transitions in a
state machine and that our pointcuts only select classes and method signatures
(or annotations on classes and methods), we do not expect performance issues
also in larger systems.

5 Related Work

In our approach, we separate a system architecture into logical and implemen-
tation models. The logical model as described in this paper contains the inter-
action specifications of system functions. The implementation model contains
the target component architecture. Thus, our approach is related to Model-
Driven Architecture (MDA) [16] and architecture-centric software development
(ACD) [17], in particular in using synthesis algorithms to obtain state machines
for our monitors. In contrast to MDA and ACD, however, we consider system
functions (services) and their defining interaction patterns as first-class model-
ing elements of both the abstract and the concrete models. Furthermore, we see

Runtime Verification of Interactions: From MSCs to Aspects 73

the implementation model as a strict refinement of the logical model and require
consistency of the mapping. Our models make use of MSCs as notation and are
independent from any programming language constructs.

We see scenarios as aspects in the sense of AOP [9] at the modeling level,
by focusing on inter-component interaction patterns. In Aspect-Oriented Mod-
eling [5], the crosscutting concerns are captured as design aspects, while our
approach models these concerns as scenarios.

Runtime verification approaches differ in the techniques they apply to spec-
ify verified properties. Havelund et al. [6] categorize different runtime verifica-
tion strategies and give an overview of existing approaches. Our approach is a
Specification-Based Runtime Verification and fits their temporal assertions cat-
egory for monitoring approaches. In particular, our specification allows both
location quantification (methods calls) and temporal quantification (sequence of
messages captured by the generated automata). The benefit of our technique is
that it allows us to distribute the verification of complex interactions on separate
monitors localized in each role class.

6 Summary and Outlook

In this paper we have combined our model-based approach for distributed system
design focusing on interactions and logical architectures, with aspect-oriented im-
plementation technologies for the purpose of runtime verification of executable
systems against the specification. Interaction patterns specify the required be-
havior of the implementation and are blueprints for the generation of runtime
monitors. To combine monitors with existing implementations, we use AspectJ
and its aspect weaver. Implementations must fulfill one of two possible commu-
nication styles, so that the aspect weaver can directly insert the monitors into
the implementation.

More work is needed to have a complete and general translation to aspects
implemented in the M2Aspects tool. Moreover, experiments are currently in
progress to establish the practicality and usability of this approach in larger ap-
plications. Finally, we are investigating the integration of runtime verification,
based on the outlined technique, with a full service oriented development process
for fail safe systems. We expect this integration to allow us to specify and inte-
grate failure management code into existing systems, to increase the reliability
of distributed systems without the risks introduced by substantial refactoring.

Acknowledgments

Our work was partially supported by NSF grant CCF-0702791. Financial support
came also from the UC Discovery Grant and the Industry-University Cooperative
Research Program, as well as from the California Institute for Telecommunica-
tions and Information Technology (Calit2). Further funds were provided by the
Deutsche Forschungsgemeinschaft (DFG) through the project InServe.

74 I.H. Krüger, M. Meisinger, and M. Menarini

References

1. Ahluwalia, J., Krüger, I., Meisinger, M., Phillips, W.: Model-Based Run-Time Mon-
itoring of End-to-End Deadlines. In: EMSOFT. Proceedings of the Conference on
Embedded Systems Software (2005)

2. Barringer, H., Finkbeiner, B., Gurevich, Y., Sipma, H. (eds.): RV’2005. Proceed-
ings of the Fifth International Workshop on Runtime Verification ENTCS 144,
Edinburgh, Scotland. Elsevier, Amsterdam, UK (2005)

3. Broy, M.: The Impact of Models in Software Development. In: Hutter, D., Stephan,
W. (eds.) Mechanizing Mathematical Reasoning. LNCS (LNAI), vol. 2605, pp.
396–406. Springer, Heidelberg (2005)

4. Broy, M., Krüger, I., Meisinger, M.: A Formal Model of Services. ACM Transactions
on Software Engineering and Methodology (TOSEM) 16(1) (2007)

5. France, R., Georg, G., Ray, I.: Supporting Multi-Dimensional Separation of Design
Concerns. In: The 3rd AOSD Modeling With UML Workshop (2003)

6. Havelund, K., Goldberg, A.: Verify Your Runs. In: Proceedings of the Grand
Verification Challenge Workshop Verified Software: Theories, Tools, Experiments,
Zurich, Switzerland (2005)

7. ITU-TS. Recommendation Z.120: Message Sequence Chart (MSC). Geneva (1996)
8. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An

overview of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
327–353. Springer, Heidelberg (2001)

9. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M.,
Irwin, J.: Aspect Oriented Programming. Technical report, Xerox Corp (1997)

10. Krüger, I.: Distributed System Design with Message Sequence Charts. PhD thesis,
Technische Universität München (2000)

11. Krüger, I., Grosu, R., Scholz, P., Broy, M.: From MSCs to Statecharts. In: Ram-
mig, F.J. (ed.) Distributed and Parallel Embedded Systems, pp. 61–71. Kluwer
Academic Publishers, Dordrecht (1999)

12. Krüger, I., Lee, G., Meisinger, M.: Automating Software Architecture Exploration
with M2Aspects. In: SCESM. Proceedings of the ICSE 2006 Workshop on Scenarios
and State Machines (2006)

13. Krüger, I., Mathew, R., Meisinger, M.: Efficient Exploration of Service-Oriented
Architectures using Aspects. In: ICSE. Proceedings of the 28th International Con-
ference on Software Engineering (2006)

14. Krüger, I.H., Ahluwalia, J., Gupta, D., Mathew, R., Moorthy, P., Phillips, W.,
Rittmann, S.: Towards a Process and Tool-Chain for Service-Oriented Automo-
tive Software Engineering. In: SEAS. Proceedings of the ICSE 2004 Workshop on
Software Engineering for Automotive Systems (2004)

15. Leue, S.: Methods and Semantics for Telecommunications Systems Engineering.
PhD thesis, University of Berne, Switzerland (1994)

16. OMG (Object Management Group). Model Driven Architecture (MDA). MDA
Guide 1.0.1, omg/03-06-01 (2003), http://www.omg.org/mda

17. OMG (Object Management Group). UML, Version 2.0. OMG Specification
formal/05-07-04 (superstructure) and formal/05-07-05 (infrastructure) (2005)

http://www.omg.org/mda

Towards a Tool for Generating Aspects from

MEDL and PEDL Specifications
for Runtime Verification

Omar Ochoa, Irbis Gallegos, Steve Roach, and Ann Gates

The University of Texas at El Paso, Computer Science Department,
500 W. University Avenue, El Paso TX, 79912, USA

{omar,irbisg}@miners.utep.edu, {sroach,agates}@utep.edu

Abstract. This paper describes an approach to generate AspectJ as-
pects from formal specifications written for the Monitoring and Checking
(MaC) runtime verification tool. The aspects can serve as the founda-
tion for instrumentation of programs that can be verified at runtime.
To demonstrate the practicability of the proposed approach, the authors
used a benchmark from the MaC research. The benchmark is based on
a safety-critical railroad crossing system comprised of a train, a gate,
and a controller. Finally, the paper describes the results from generating
Java-MaCs specification scripts to AspectJ aspects, and it compares the
proposed approach to related approaches and ones that use aspects.

Keywords: Runtime Verification, Java-MaC, Aspect Oriented Program-
ming, Runtime Monitoring, Software Assurance.

1 Introduction

With the ubiquity of software, especially in safety-critical systems, avoiding soft-
ware failures must be emphasized. The failure of safety-critical systems, such as
airplane controllers or railroad crossing systems can result in monetary loss, in-
jury, or death. Software testing, the most commonly used verification technique,
cannot provide complete test coverage; furthermore, designing effective compre-
hensive test suites for complex systems is difficult. A complementary technique
called runtime verification examines actual execution paths, not possible paths.
In this approach, a monitor system observes the behavior of a system and de-
termines if it is consistent with specified properties. A monitor takes a software
system and specifications of software properties and checks that the execution
meets the properties, i.e., that the properties hold for the given execution [1].

A programming paradigm called Aspect Oriented Programming (AOP) [2] al-
lows developers to encapsulate cross-cutting concerns that are needed to develop
effective runtime verification approaches that require instrumentation of speci-
fications in software code. This paper examines the integration of AOP into the
runtime verification approach called Monitoring and Checking (MaC) [3]. MaC
was chosen because it supports the separation of monitoring and specification

O. Sokolsky and S. Tasiran (Eds.): RV 2007, LNCS 4839, pp. 75–86, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

76 O. Ochoa et al.

requirement level concerns by using two distinct languages, one that deals with
details of implementation and another one that deals with requirements.

MaC is a framework for run-time correctness and assurance of real-time sys-
tems. Currently a prototype implementation for programs written in the Java
language exists (Java-MaC) [4]. MaC offers well-defined specification languages
based on Linear-time Temporal Logic (LTL) in which the underlying structure
of time is a totally ordered set (S, <) isomorphic to the natural numbers with
their usual ordering (N, <). Under this definition, time is discrete, it has an
initial moment with no predecessors, and it is infinite into the future.

The goal of the proposed approach is to enhance runtime verification by devel-
oping a tool that translates the MaC specifications into AspectJ aspects. This is
important because it removes the need for an instrumentation system, such as the
one included in MaC, while maintaining MaCs unique features, i.e., the MEDL
and PEDL specification languages that support specification of the properties
to be monitored and the events and conditions that trigger monitoring. The
proposed approach allows the runtime verification community to benefit from
research advances in AOP and to reduce the need to maintain instrumentation
code, which is managed by AspectJ in our approach.

The paper is divided as follows: Section 2 presents a detailed overview of
Java-MaC and AOP. Section 3 describes the proposed approach and an example
illustrating it. Section 4 presents the related work. Finally, Section 5 provides
concluding remarks.

2 Background

In this section, an overview is provided of the most relevant features of Java-MaC
and Aspect Oriented Programming.

2.1 Java-MaC

The Java-MaC framework allows users to specify system states to be monitored,
define high-level events based on run-time system states, and describe correct-
ness properties in terms of high-level events. The framework uses a runtime
component called a filter to track the collection of probes inserted into the tar-
get program, and a separate runtime component called an event recognizer to
detect events from the state information received from the filter.

The Meta-Event Definition Language (MEDL), based on an extension of LTL,
is used to express a large subset of safety properties of systems, including real-
time properties such as when a train is crossing, the gate is down. The Primitive
Event Definition Language (PEDL) is used to describe events and conditions
in terms of system objects such as methods and variables. PEDL specifications
define the events recognized by the event recognizer, and these event definitions
are used to automatically instrument the original program. The event recognizer
emits event streams to the run-time checker that verifies the sequence of events
with respect to the specified MEDL properties [6]. Fig. 1. depicts a data flow
diagram for the Java-MaC framework.

Towards a Tool for Generating Aspects 77

Fig. 1. Data flow diagram for the Java-Mac Framework

Property and Behavior Specifications. Java-MaC defines two types of state
information, events and conditions. Events are asserted instantaneously during
the system execution, whereas conditions represent information that holds true
for a duration of time [6]. The distinction between the two determines what the
monitor can infer about the execution. The monitor can conclude that an event
does not occur at any moment until it receives an update from the filter. By
contrast, once the monitor receives a message from the filter, it will determine
if a state change has occurred.

In Java-MaC, PEDL is closely related to the target programming language
because events are defined using program entities such as variables and methods
[7]. Each declaration identifies an object that needs to be monitored. The object
resides in a memory location. Since the exact memory location of the object
is not known during the static phase, this object is specified in a monitoring
script as a chain of references that starts in a fixed place in the object graph
of the Java program, i.e., either a static variable of a class, a local variable of a
static method, or the beginnings and endings of methods. When such a chain of
references in a monitoring script is specified, it becomes a name for the memory
location of the monitored objects [7]. PEDL allows the monitoring of fields and
variables of the primitive type, but it does not allow objects to be monitored
directly in order to minimize monitoring overhead.

Additionally, domain specific safety requirements are written in MEDL. Primi-
tive events and conditions in MEDL specifications are imported from PEDL spec-
ifications. The correctness of the system is described in terms of safety properties
and alarms. Safety properties are conditions that must always be true during
execution. Alarms are notifications that a violation has occurred. Alarms and
safety properties are complementary ways of expressing the same thing. Having

78 O. Ochoa et al.

both provides the user with flexibility in expressing how properties are to be
expressed and handled.

Java-Mac Instrumentation. Java-MaC monitors global primitive variables,
local primitive variables, and the start and end of methods. The Java-MaC in-
strumentor detects instructions that update monitored variables, or instructions
located at the beginning and ending of methods by placing bytecode instructions
to overlook updates of the entities of interest.

During the static analysis phase, the Java-MaC instrumentor identifies candi-
date update instructions for the monitored variables. Once the instrumentor rec-
ognizes an update instruction for a monitored variable, the instrumentor inserts
a method call to Java-MaCs monitoring methods, acting as a probe at the byte-
code level. The probe appears immediately before the instruction and consists of
the following methods: monitorEnter(), Filter.lock() and sendObjMethod(Object
parentAddress, <T> value, String varName), where parentAddress is an address
of an object whose field varName is monitored. When sendObjectMethod() is
called at runtime, it checks if the variable being probed is a monitored vari-
able by matching parentAddress with the address of a monitored object in the
address table, i.e., a variable of interest. If the variable is a variable of inter-
est, sendObjMethod() sends it to the event recognizer; otherwise, the variable is
ignored.

The instrumentor inserts monitorExit(), Filter.lock() after the variable being
monitored. The pair of monitorEnter() and monitorExit() ensures that the update
to a variable and the sending of its new value are executed atomically. For execu-
tion points (i.e., calls and exits from methods) the instrumentor inserts probes at
the starting point of a method and at the ending points of a method [7].

2.2 Aspect-Oriented Programming

AOP aids programmers in the encapsulation of cross-cutting concerns, i.e., spe-
cific requirements that span different modules in a system and that cannot be
modularized into one component. An aspect is a class that includes constructs to
support cross-cutting encapsulation through pointcuts and advice as described
in the following paragraph. Aspects can include fields and methods that are
merged with classes by a program called a weaver. Aspect weaving can occur
at the source code level, at post compilation, or at class-load time [8, 9]. As-
pects provide the benefit of good modularity, leading to code simplicity, ease of
development and maintenance, and potential for reuse [10].

AspectJ. AspectJ [11] is an AOP implementation for the Java programming
language. A join point is a place in the code where additional behavior is re-
quired. A pointcut is a specification of a set of join points. There are two types of
pointcuts: primitive and user-defined. User-defined pointcuts are boolean com-
binations of primitive pointcuts. Pointcuts may match a method invocation at

Towards a Tool for Generating Aspects 79

either the call site or the method site, at an assignment or read from a field, or
at a point where some condition holds. For example, one could verify if variable
x is updated by using the construct: pointcut checkx() : set(int Class.x), where
checkx() identifies the aspect, set() recognizes when the specified non-private
variable is updated, and int Class.x specifies variable x in class Class as the
variable of interest. The behavior of the program can be changed at each join
point by specifying a construct called advice, i.e., code to be executed at a join
point. The constructs before(), after(), direct when the advice is going to be
executed, either before entering the join point or after exiting the join point,
respectively. Additionally, the construct around() executes before entering the
join point like a before() and optionally using a proceed() to execute the join
point or to return and not execute the join point.

3 Proposed Approach

Primitive events in PEDL correspond to transfer of control between methods
or assignments to variables. PEDL events describe join points in a program.
MEDL properties correspond to safety and liveness requirements; therefore, the
advice at each pointcut is checked against the MEDL specification. As mentioned
earlier, an aspect is comprised of pointcut declarations and advice associated
with each pointcut. Recall that the goal of the proposed approach is to enhance
runtime verification by developing a tool that translates the MaC specifications
into AspectJ aspects. This section describes the generation of an aspect from
PEDL and MEDL, and it provides an example of how the approach can be used
to provide assurance to a safety-critical system.

3.1 Description

PEDL lists the variables and method calls that are going to be used to generate
events as well as the conditions to be used for monitoring. As a result, each listed
variable and method must have a corresponding join point specified. Events that
are described by the PEDL keywords update, IoM, start, end, startM, endM, are
mapped to corresponding AspectJ constructs (see Table 1). For example, startM
and endM correspond to the beginning of a method and the ending of a method,
and they map to the before() and after() directives given to the advice modifier.

Recall that conditions are a combination of variables and booleans that when
true emit an event. The proposed tool takes a condition and creates an auxilliary
method that checks the current state of the system with respect to the condition.
If the condition is true, then an appropriate aspect variable will contain the
boolean value true; otherwise, it will contain the value false. MEDL states the
conditions on high-level events that must be checked on the low-level events
and conditions given by a PEDL specification. Because PEDL field methods
are created for conditions and low-level events, MEDL specifications will be
expressed as a method inside the aspect. Such methods are called on the advice

80 O. Ochoa et al.

Table 1. Mapping from Java-MaC to AspectJ

Java-MaC AspectJ

update(x) set(x)
startM() pointcut: before()
endM() pointcut: after()
IoM() pointcut: around()

Fig. 2. Data flow diagram using AOP and MaC specifications

corresponding to the pointcuts extracted from PEDL, i.e., when this method
gets called, it will check the boolean value of the aspect fields that represent the
conditions described by PEDL. The diagram in Fig. 2 illustrates how data flows
in the proposed tool.

3.2 Example

The described approach is applied to the simulation of railroad crossing gates,
and it is a benchmark that was used by MaC [12]. The code, conditions, and
events from the MaC example were reused in order to demonstrate that the
behaviour of both approaches remained unchanged for this example. The safety
property used was: when the train crosses the railroad crossing, the gates must be
down. The railroad-crossing example was the modified example that is provided
with the distribution of Java-MaC, which included the MEDL and PEDL spec-
ification files. The purpose of this example is to demonstrate instrumentation
using the generated AspectJ aspect and to show how the specified properties, as
captured by the aspects, are verified at runtime.

Towards a Tool for Generating Aspects 81

The PEDL file for this example contains the following conditions: startIC
denotes a train reaching the rail road crossing; endIC denotes the train passing
the crossing; startGD denotes the gate closing; and endGD denotes the gate
starting to rise. The MEDL file contains the conditions IC, which denotes a
train is crossing, and GD, which denotes a gate is down. These conditions are
represented as CondIC = [startIC, endIC] and CondGD = [startGD, endGD],
with the safety property safeRRC =!IC||GD. The aspect generated from this
specification consists of the safety condition safeRRC =!IC||GD. Two point-
cuts are generated to monitor each part of the condition. Pointcut IC is triggered
when trainx + trainlength > crossx&&trainx <= crossx + crosslength, which
represents the train crossing. Pointcut GD is triggered after Gate.gd() is exe-
cuted, but before Gate.gu() is called, which represent the gate going down or
up, respectively.

The aspect monitors the safety condition and, if it is violated, an alarm is
raised. Once the aspect is generated, it is woven into the railroad-crossing appli-
cation. The simple aspect-instrumented version detected the same violations as
the Java-MaC-monitored version.

The following PEDL code excerpt provides the pointcuts for the AspectJ
aspect. The MonV arDcl heading indicates that the variable declarations fol-
lowing the heading are to be monitored. So in this case, the variables: trainx,
trainlength, crossx and crosslength in the class RRC are of interest. Similarly,
the MoMethodDcl heading indicates that the methods following the heading are
to be monitored, which in this instance are the methods: gd() and gu() in the
class Gate.

PEDL Code excerpt used to provide the pointcuts for the AspectJ Aspect

MonVarDcl:
float RRC.train_x;
int RRC.train_length;
int RRC.cross_x;
int RRC.cross_length;

MonMethodDcl:
Gate.gd();
Gate.gu();

The MEDL code excerpt below was used to provide the advice for the As-
pectJ aspect. In this excerpt, four events are imported: startIC, endIC, startGD,
endGD. The events are monitored based upon the properties defined later in the
MEDL script. The CondDef heading denotes the area in which the conditions
to be associated with events are declared. In this case, the InCrossing specifies
that there is a train in the crossing. Similarly, GateDown specifies that the gate
in the crossing is down. Next the user specifies the safety properties that use
the CondDef specification. The specification appears after the SafePropDef
heading. For this property, it is the case that whenever a train is in the crossing
(InCrossing), it must always be the case that the gate is down (GateDown).

82 O. Ochoa et al.

MEDL code excerpt used to provide the advice for the AspectJ Aspect

ReqSpec RailroadCrossing

import event startIC, endIC, startGD, endGD;

CondDef:
Cond InCrossing = [startIC, endIC];
Cond GateDown = [startGD, endGD];

SafePropDef:
SafeProp safeRRC = InCrossing -> GateDown;

End

In this small example, the proposed tool used the MEDL and PEDL specifi-
cations and successfully generated the AspectJ aspect matching the MEDL and
PEDL specifications as illustrated in the following code. The generated aspect
behaved as expected.

AspectJ Aspect Matching the MEDL and PEDL Specifications

//PEDL equivalent section

before(RRC trgt) : set (float RRC.train_x) &&
target(trgt)

before() : call(void Gate.gd(int))

after() : call(void Gate.gd(int))
GD=true;
monitor();

before() : call(void Gate.gd(int))
GD=false;
monitor();

//MEDL equivalent section
IC =

aRRC.train_x + aRRC.train_length > aRRC.cross_x && aRRC.train_x
<= aRRC.cross_x + aRRC.cross_length;

4 Related Work

Several approaches have exploited the cross-cutting and instrumentation mech-
anisms of AOP to provide runtime verification and fault recovery capabilities.

Towards a Tool for Generating Aspects 83

This section provides a short description of some of these efforts, and it describes
how each differs from the described approach.

4.1 Monitoring Oriented Programming (MOP)

The University of Illinois at Urbana-Champaigns Monitoring Oriented Program-
ming (MOP) framework [13] allows users to check conformance of implementa-
tion to specifications at runtime. Similar to the proposed approach, the framework
uses an AOP-based instrumentation package that allows monitors to be generated
as AspectJ aspects. In MOP, monitors are viewed as added functionality because
user-defined code is executed at user-specified places within the code of the exist-
ing system and violations are reported at runtime. MOP also extends program-
ming languages (Java, for instance) by adding logics that can be added anywhere
in the program. So far, MOP supports logic plug-ins for future-time and past-time
temporal logics, extended regular expressions and JASS, all available through a
web repository.

The difference between MOP and the proposed approach lies in that MEDL
and PEDL are used as specification languages. Mondragon et al. [14] showed
that patterns and scopes can be used to generate formal specification in Future
Interval Logic (FIL) that can be converted into MEDL provide support to users
without deep training in formal specifications. In addition, MOP requires gener-
ation of a separate monitor for every specification, which can consume intensive
computation power when large sets of specifications exist. With the proposed
approach, one monitor is generated as an aspect for all specifications.

4.2 TRAP/J

TRAP/J [15] from Florida International University is a software tool that en-
ables autonomic computing in existing Java programs by generating adapt-ready
versions of the original programs at compile time, i.e., programs in which be-
havior can be managed at runtime. The generation process is transparent to
the user, and there is no need to modify the original source code manually. In
TRAP/J, new behavior is introduced to the adapt-ready programs at runtime
using the wrapper- and meta-language classes. First, the adapt-ready applica-
tion is loaded by the JVM. At the time each meta-object (entities of interest in
the code) is instantiated, it registers itself with the Java RMI registry using a
unique ID. Next, if an adaptation is required, the composer (entity that requests
an adaptation to the code) dynamically adds new code to the adapt-ready ap-
plication at runtime, using Java RMI to interact with the meta-objects. As part
of the behavioral reflection provided in the adaptation infrastructure, a meta-
object protocol is supported in TRAP/J that allows interception and reification
of method invocations targeted to objects of the classes selected at compile time
to be adaptable. To reduce overhead, TRAP/J enables the developer to select,
at compile time, a subset of classes to be adaptive at runtime.

To support dynamic adaptation in existing Java programs, TRAP/J bene-
fits from aspect-oriented programming (AspectJ) and the ability of programs to

84 O. Ochoa et al.

reason and alter their own behavior (behavioral reflection). TRAP/J generates
specific aspects and reflective classes associated with the selected classes. A case
study is presented by Sadjadi et al. [15] in which TRAP/J is used to enable an
existing audio-streaming application to perform self-optimization in a wireless
network environment by adapting to changing conditions automatically. Because
TRAP/Js main goal is not to provide verification, but to provide fault recov-
ery capabilities, it does not support automatic integration of formally specified
properties into existing code.

4.3 Temporal Assertion Using AspectJ

Stolz and Bodden [16] present Java Logical Observer (JLO), a runtime verifica-
tion framework for Java programs. In the JLO approach, properties are specified
in LTL over AspectJ pointcuts. These properties are checked during program
execution by an automaton-based approach in which transitions are triggered
through aspects and violations are detected when the automaton enters an error
state.

No Java source code is necessary since AspectJ works on the byte-code level,
permitting instrumentation of third-party applications. The current implemen-
tation supports the full formalism without access to the runtime state. The
difference between JLO and the proposed approach is that JLO uses AspectJ
to determine whether code execution causes the automaton to enter an invalid
state while the proposed approach uses AspectJ to instrument the program and
monitors the execution of the code itself.

4.4 jMonitor

jMonitor [17] is a pure Java library and runtime utility that allows users to spec-
ify event patterns to monitor runtime execution of Java applications. jMonitor
works by overloading the dynamic class loader by instrumenting the class byte-
code of the monitored Java program on the fly according to externally specified
event patterns and event monitors.

During the execution of an instrumented application, each Java bytecode in-
struction that matches any of the specified event patterns triggers the call of one
or more associated monitor methods. The monitor methods get called with the
following runtime context information regarding the triggering event: the type
of event, its target object, the call stack representing the method in which the
event occurred, and the arguments to the method which collectively defines the
full call context when the event occurred.

jMonitor events correspond to fundamental Java programming abstractions
such as reading or writing of a field in a class, method invocation, method return
or throw of an exception, and creation of a new object or array. Each event is
also qualified with a Java application context such as the name of the field or
the method as well as the names of the class and method context. The names
are specified as strings representing POSIX compliant regular expressions.

Towards a Tool for Generating Aspects 85

Several distinct event monitors can be associated with any event. jMonitor
instruments applications to capture the call context and call the monitor function
with this information. Each monitoring function is called before, after, or instead
of the associated event depending on the event specification.

Both jMonitor and the proposed approach are building instrumentors that in-
strument at the bytecode level, however, jMonitor is not using aspects to support
instrumentation. By using aspects, the proposed approach has the support of the
AOP community for maintaining, improving, and porting the instrumentor to
other languages.

5 Summary

The goal of the proposed approach is to enhance runtime verification by devel-
oping a tool that translates the MaC specifications into AspectJ aspects. This is
important because it removes the need for an instrumentation system, such as the
one included in MaC, while maintaining MaCs unique features, i.e., the MEDL
and PEDL specification languages that support specification of the properties
to be monitored and the events and conditions that trigger monitoring. The
proposed approach allows the runtime verification community to benefit from
research advances in AOP and to reduce the need to maintain instrumentation
code, which is managed by AspectJ in our approach. The AOP community has
been focused on the development of next-generation aspect weavers, and this
work will benefit software instrumentation.

The tool described in this paper converts MEDL and PEDL files to AspectJ
aspects. The results show the effectiveness of using AspectJ as the foundation for
instrumentation because of the cross-cutting nature of instrumentation. Future
work includes support for all features in the MEDL and PEDL languages and
demonstration of the equivalence of the weaving process of AspectJ to Java-
MaC instrumentation. Other work includes determining whether the proposed
approach can be applied to runtime verification of services used in a service-
oriented environment and implemented in a variety of AOP-supported languages.

Acknowledgments. This work was partially supported by NSF grant nos.
CNS-0540592 and EIA-0080940.

References

1. Delgado, N., Gates, A., Roach, S.: A Taxonomy and Catalog of Runtime Software-
Fault Monitoring Tools. IEEE Transactions on Software Engineering 30(12), 859–
872 (2004)

2. Kiczales, G., Lamping, J., Mendhekar, A.: Aspect-Oriented Programming. In: Ak-
sit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer,
Heidelberg (1997)

3. MaC: Run-time Monitoring and Checking (MaC) (2006),
http://www.cis.upenn.edu/rtg/mac/index.php3

http://www.cis.upenn.edu/rtg/mac/index.php3

86 O. Ochoa et al.

4. Emerson, E.: Temporal and Modal Logic. Handbook of theoretical computer sci-
ence: formal models and semantics B, 995–1072 (1990)

5. Palo Alto Research Center: ÒThe AspectJ Programming GuideÓ (October 1, 2006)
[Online] available,
http://www.eclipse.org/aspectj/doc/released/progguide/index.html

6. Kim, M., Kannan, S., Lee, I., Sokolsky, O.: Java-MaC: A Run-time Assurance Tool
for Java. In: Proc. 1st International Workshop on Run-time Verification (2001)

7. Kim, M., Viswanathan, M., Kannan, S., Lee, I., Sokolsky, O.: Java-MaC: A Run-
time Assurance Approach for Java Programs. Formal Methods in System De-
sign 24(2), 129–155 (2004)

8. Hilsdale, E., Hugunin, J.: Advice Weaving in AspectJ. In: Proc. Aspect-oriented
Software Development 2004, pp. 26–35 (2004)

9. Alto, P.: Research Center: The AspectJ Programming Guide (2006),
http://www.eclipse.org/aspectj/doc/released/progguide/index.html

10. Kiczales, G., Lamping, J., Mendhekar, A.: Aspect-Oriented Programming. In: Ak-
sit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer,
Heidelberg (1997)

11. Kiczales, G., Hilsdale, E., Hugunin, J., Kerten, M., Palm, J., Griswold, W.G.: An
overview of AspectJ. In: Proc. European Conference on Object- Oriented Program-
ming 2001 (2001)

12. Heitmeyer, C., Mandrioli, D. (eds.): Formal Methods for Real-Time Systems. Num-
ber 5 in Trends in Software. John Wiley & Sons, Chichester (1996)

13. Chen, F., D’Amorim, M., Rosu, G.: A Formal Monitoring-based Framework for
Software Development and Analysis. In: Davies, J., Schulte, W., Barnett, M. (eds.)
ICFEM 2004. LNCS, vol. 3308, Springer, Heidelberg (2004)

14. Mondragon, O., Gates, A.Q., Roach, S., Mendoza, H., Sokolsky, O.: Generating
Properties for Runtime Monitoring from Software Specification Patterns. Interna-
tional Journal of Software Engineering and Knowledge Engineering 17, 107–126
(2007)

15. Sadjadi, M., McKinley, P.K., Stirewalt, R.E.K., Cheng, B.H.C.: Generation of Self-
Optimizing Wireless Network Applications. In: ICAC-04. Proc. International Con-
ference on Autonomic Computing (2004)

16. Stolz, V., Bodden, E.: Temporal Assertions using AspectJ. In: RV 2005. Proc 5th
Workshop on Runtime Verification (2005)

17. Karaorman, M., Freeman, J.: Java Runtime Event Specification and Monitoring
Library. Electronic Notes in Theoretical Computer Science 113(3), 181–200 (2005)

http://www.eclipse.org/aspectj/doc/released/progguide/index.html
http://www.eclipse.org/aspectj/doc/released/progguide/index.html

ARVE: Aspect-Oriented Runtime Verification

Environment

Hiromasa Shin, Yusuke Endoh, and Yoshio Kataoka

Corporate Research & Development Center, Toshiba Corporation,
(1 Komukai-Toshiba-cho, Saiwai-ku, Kawasaki-shi, Kanagawa 212-8582, Japan)

hiromasa.shin@toshiba.co.jp

Abstract. Software quality assurance activities consume a large amount
of effort in industrial software developments. Actually, industrial software
development sometimes requires a larger amount of testing/verification
assets than the product code itself. Appropriate management of the test-
ing/verification assets will effectively reduce the software quality assur-
ance effort. We propose a verification asset reuse environment based on
the aspect-oriented programming paradigm. Our tool, ARVE (Aspect-
oriented Runtime Verification Environment), enables efficient verification
asset reuse thanks to the aspect-oriented scripting language. ARVE also
promotes the efficiency of the verification process by automating the
verification script weaving.

1 Introduction

The more important the role of software becomes in everyday life, the more severe
the requirement for software dependability becomes. Therefore, software quality
assurance activities are consuming a large portion of resources, a tendency that
is especially marked in the case of industrial software development. For instance,
it is often observed that the number of lines of verification software for a certain
software product is significantly larger than the one of the product software
itself. One of the major reasons is that the verification software is usually for
the target software product’s exclusive use. Therefore, the verification software
should be prepared from scratch for each newly developed software product,
although the product itself is usually developed with reusable components. We
found that the major obstacle to the reuse of verification software is the fact
that verification software often relates with the target product software in a
crosscutting manner. In addition, verification software is often developed in an
ad hoc manner, or without reference to any reusability policy.

Aspect-oriented programming attempts to deal with crosscutting functional-
ity by means of modules. We studied the aspect-oriented paradigm and designed
a framework to deal with verification software in the aspect-oriented manner.
In this paper, we introduce the practical realization of the aspect-oriented ver-
ification framework. From the practical viewpoint, we chose C/C++ platform
to realize the framework although most of the aspect-oriented tools available

O. Sokolsky and S. Tasiran (Eds.): RV 2007, LNCS 4839, pp. 87–96, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

88 H. Shin, Y. Endoh, and Y. Kataoka

are designed for Java. We did so because most industrial software products are
written in C/C++, and are developed with well-matured C/C++ tools such
as compilers, symbolic debuggers and performance profilers. Our tool, ARVE
(Aspect-oriented Runtime Verification Environment), utilizes those existing de-
velopment tools to improve the reusability of verification software following the
aspect-oriented paradigm.

In the following sections, we first introduce the overview of ARVE, followed by
the usage of ARVE. Then we explain the details of ARVE from some technical
viewpoints. We also discuss the relation with previous research and mention our
plans for future work.

2 Overview

The aim of ARVE is to realize the ”Write once, run anywhere” (WORA) envi-
ronment in runtime verification. A verification asset, or verification intellectual
property (VIP), is defined as a reusable part of verification software. The WORA
environment is helpful for accumulating and reusing the verification asset. ARVE
is designed to provide the WORA environment in runtime verification by oper-
ating in combination with an existing proven tool, a symbolic debugger.

L4: Symbolic Debugger
(ex. GDB)

Debugger Interface

L3: ARVE Kernel

IPC (gdb/mi)

Script Interpreter
(ex. Perl)

Script
I/F

L5: Target
(Native Code)

Child Process

start/exit
attach/detach

L1: Verification Script
(abstract aspect)

L2: Verification Script
(concrete aspect)

Inherit

Fig. 1. Suggested usage of ARVE

We introduce ARVE as a solution to realize the WORA environment in run-
time verification. The main features of ARVE are as follows.

– ARVE provides an aspect-oriented script language to describe verification
asset.

– ARVE provides a platform-independent interpreter for the verification script.
In other words, the same verification script runs on a variety of platforms.

– ARVE dynamically weaves the scripts into the target by using a symbolic
debugger. In other words, we can start a verification session on an already
running target.

ARVE: Aspect-Oriented Runtime Verification Environment 89

– ARVE has a debugger driver interface to support multiple debuggers. In
other words, we can easily add the new debugger supported by ARVE.

For writing verification script, ARVE provides an aspect-oriented script pro-
gramming language. In our prototype system (see Fig. 1), this script is the Perl
language extended with aspect-oriented syntax that is a subset of AspectJ [1].
ARVE controls a symbolic debugger for virtually weaving the verification script
into the verification target. The detail of the control is explained in a later
section.

3 Usage

As an illustration of a usage of ARVE, we describe a trace checker written in
the script language.

3.1 Abstraction Layer

ARVE proposes a 5-layered structure (see Fig. 1), to improve reusability and
portability of verification scripts.

– The L1 layer is a verification script that should describe ”how to verify” as
an abstract aspect in AOP. For example, the L1 script describes a reusable
algorithm for verification.

– The L2 layer is also a verification script that should describe ”what to verify”
as a concrete aspect in AOP. For example, the L2 script extends the L1 script,
and describes customizing information for verification.

– The L3 layer is ARVE that works as both an interpreter and a dynamic
weaver for the L1 and L2 scripts. The L3 interacts with the L4 via the
debugger driver interface that ensures the independence from the underlying
debugger.

– The L4 and the L5 are platform-dependent parts. The L5 is a verification
target and is a debuggee for the L4.

3.2 Trace Checker

The following script FileChecker gathers events of file handling operations during
a target execution, and checks whether the operation sequence satisfies a pattern
specified in the script. The pattern is written in regular language. Having found
an operation deviating from the specified pattern, this checker breaks the target
execution and dumps an execution stack.

A script listed below is written in a Perl-based language equipped with aspect-
related syntax similar to AspectJ [1]. The concrete aspect FileChecker extending
the abstract aspect TraceChecker specifies monitoring events by the pointcut
mark() and a normal pattern by an argument of the constructor new(...).

90 H. Shin, Y. Endoh, and Y. Kataoka

import "./lib/TraceChecker.pl";
aspect FileChecker extends TraceChecker {
pointcut mark() :

call(fopen) || call(fread) || call(fwrite) || call(fclose);
sub new ($$) {

my $class = shift;
my $self = TraceChecker->new(

"A-fopen[-1] (B-fread[3]|B-fwrite[3])* B-fclose[0]");
return bless $self, $class;

}
}

The parent aspect TraceChecker is a reusable aspect listed below, which con-
tains an algorithm to generate a DFA (Deterministic Finite Automaton) from
a regular expression and to drive the DFA by invocation of advice related with
pointcut mark(). An event symbol in the regular expression is defined by the
syntax (after or before)-(name of joinpoint)[location of handler]. Like these ex-
amples, the TraceChecker implements a reusable algorithm, and the FileChecker
implements a disposable detail for each verification.

outline of algorithm
abstract aspect TraceChecker {
private state for DFA
abstract pointcut mark();
sub new ($$) {

construct a DFA from regular expression
Initialize the state of DFA

}
sub DESTROY($) {

if DFA is not in acceptance state, report error
}
before() : mark() {

drive DFA by the current location
if there is no transition then report error

}
after() : mark() {

...
}

}

We applied the aspect TraceChecker to monitor the API usage of socket han-
dling in the server process, such as Apache or Squid, and conformed that it
worked properly.

3.3 Other Examples

The followings are other examples of the verification assets for ARVE.

– Tracer monitors the execution of a target and prints the call graph. This is
one of the most popular applications in AOP, and is also one of the most
useful scripts for ARVE.

ARVE: Aspect-Oriented Runtime Verification Environment 91

– Profiler counts the frequency of the subroutine calls and measures their ex-
ecution time.

– LeakChecker records the usage of resources in the process. At the end of the
verification, this checker shows the list of resources, which were acquired but
were not released.

The Tracer or the Profiler may be useful but is too simple to call a verification
asset. These kinds of useful scripts can be written in portable and reusable ways,
and become a part of verification assets. By reusing useful verification assets, we
can easily construct the customized runtime verification system (see Fig. 2).

ARVE

Verification Target
in Running

Virtual Weaving of
Verification Scripts

Trace Checker

What to verify.
(disposable)

How to verify.
(reusable)

Trace Target
Pattern

TracerTrace Target

Verification Scripts

alphabet of trace
d ::= “0”|”1”| ... |”9”
o ::= “+”|”-” |”*” |”/”
e ::= “=“
c ::= “C”

target=d|o|e|c

target=d|o|e|c
pattern=((d+ o d+ e)|c)

Trace Target
Pattern #1

Leak CheckerMemory Alloc.

Fig. 2. Application example of ARVE

4 Details

4.1 Optimization

ARVE uses a symbolic debugger to weave verification script and to evaluate ex-
pression in the target context. ARVE interacts with the debugger by inter-process
communication, which causes sizable runtime overhead. For reducing the inter-
action with the debugger, ARVE has a static optimizer to minimize the number
of breakpoints, and to simplify the pointcut expression at each breakpoint. We
briefly explain these optimization techniques.

The join point model in AOP defines the potential locations where aspect acts
on. ARVE takes a join point as a breakpoint addressed by symbol name.

A verification script has pointcut expressions for selecting breakpoints. The
pointcut expression (pcut ::= prim | pcut ∧ pcut | pcut ∨ pcut | ¬pcut) is
a logical formula, whose atomic proposition is primitive pointcut (prim ::=
prims | primd). The primitive pointcut is classified into two categories, a static
one (prims ::= call(patt) | · · ·) and a dynamic one (primd ::= if(expr) | . . .).
The former is defined to depend on the static context (ex. breakpoint location),
and the latter is defined to depend on the dynamic context (ex. execution state).
In the following description, SC denotes the whole set of static context, and DC
denotes the whole set of dynamic context in the target program.

92 H. Shin, Y. Endoh, and Y. Kataoka

The minimum set of breakpoints for pointcut pc(x, t) is defined as BP (pc) ≡
{x ∈ SC | ∃t ∈ DC. pc(x, t) = true}, whose element is a breakpoint where
pointcut pc is possibly true. Applying the definition to the dynamic pointcut
leads to BP (primd) = SC and BP (¬primd) = SC. The similar application to
the static pointcut leads to BP (prims) = P and BP (¬prims) = SC −P , where
P is defined as a subset of SC selected by prims. The application to the logical
operator leads to BP (pc1 ∧ pc2) = BP (pc1) ∩ BP (pc2) and BP (pc1 ∨ pc2) =
BP (pc1) ∪ BP (pc2). The minimum set of breakpoints for arbitrary pointcut
expression in negation normal form (NNF) can be computed by recursive appli-
cation of the previous rules. Having computed the minimum set of breakpoints,
ARVE reduces the pointcut expression at each breakpoint.

For an illustration, we explain the case with SC = {x1, x2, y1, y2} and pc =
call(x∗) ∧ ¬(call(x1) ∧ if(e)) = call(x∗) ∧ (¬call(x1) ∨ ¬if(e)). The minimum
set of breakpoints is computed as BP (pc) = BP (call(x∗)) ∩ (BP (¬call(x1)) ∪
BP (¬if(e))) = {x1, x2}. The pointcut expressions at each breakpoint can be
reduced as follows, pc|x1 = ¬if(e) and pc|x2 = true. The latter expression
does not need to evaluate e in the target context, and thus ARVE reduces the
interaction with the debugger.

We evaluated the runtime performance of ARVE in a laptop computer (Dyna-
book TECRA 9000, Pentium-III 1.2 GHz, Linux 2.4.20 and gdb 6.4). According
to this experiment, one empty subroutine with one empty advice took about
6 microseconds, whereas one empty subroutine without advice took about 10
nanoseconds. The relatively large overhead is due to the inter process communi-
cation (IPC) between ARVE and the debugger, and the cost of one advice call
is comparable to the cost of one operating system call.

The overhead in microseconds is not acceptable for timing- or performance-
critical applications, but is acceptable for network communication or user-
interactive applications, whose time scale is larger than milliseconds. For limiting
the target, ARVE can be used for the verification.

4.2 Debugger Control

ARVE interacts with symbolic debugger via debugger driver interface defined
in Table 1. This interface located between the L3 and L4 in Fig. 1, ensures the
independence of ARVE from a debugger. Any debugger satisfying this interface
can work in the ARVE system. In the current implementation, we can use two
popular debuggers, GNU’s gdb and Microsoft’s WinDbg. In order to add a new
debugger, we have only to add a new debugger driver for it.

ARVE starts a debugger by start, and selects a verification target by load
(or attach). ARVE parses and analyzes the verification script, and computes
the minimum breakpoint by calling symbol lookup. ARVE installs the initial
breakpoints by insert, starts the target by run (or cont) and waits for the target
event by wait. Having found the target stopped at a breakpoint, ARVE evaluates
the pointcut to decide whether to call the advice or not. Having finished the work
at the breakpoint, ARVE continues the target execution by cont. Having received

ARVE: Aspect-Oriented Runtime Verification Environment 93

Table 1. Debugger interface in ARVE

Name In Out Function

start − − start a debugger
stop − − stop the debugger
query $com $ret query $com to the debugger
load @arg − load a target with @arg
attach $pid − attach to a target with $pid
detach − − detach from the target
return − − return from the subroutine
run − − start the target
cont − − continue the target
wait − $bp wait for a breakpoint
insert $id $bp insert a breakpoint $id
remove $bp − remove the breakpoint $bp
lookup $reg @vec query symbols @vec matching $reg

the signal to stop the session, ARVE removes the breakpoints by remove, and
calls stop (or detach) to close the session.

Some more details are explained below. The before advice is called at the
entrance breakpoint of the subroutine, whereas the after advice is called at the
returned breakpoint of the subroutine. Therefore, ARVE does not distinguish
between pointcuts call and execution. The returned breakpoint used for after
advice is installed at the entrance of the subroutine, and is removed after the
advice is called.

4.3 Target Abstraction

ARVE works a runtime environment for verification scripts, and the environment
provides primitive service calls for the scripts to use debugger. The script can
use any debugger service by these service calls listed in Table 2. However, most
scripts should not use them directly, because they are so primitive that their
direct use spoils the platform portability of the scripts.

Table 2. Primitive service for verification script

Name In Out Function

eval $exp $val evaluate expression $exp
call $com $ret query command $com
this − $jp retrieve join point signature

For example, in order to retrieve a return value of subroutine on Intel x86 ar-
chitecture, the script has to read the value of a register named $eax. For localiz-
ing this kind of platform-dependent code, we introduced target abstraction script,
which provides platform-independent methods to access context information at

94 H. Shin, Y. Endoh, and Y. Kataoka

join point. The following is an example of this script, which hides details of the
target architecture. Most verification scripts access the join point information by
this script.

ThisJP Class for x86 architecture
class ThisJP {
sub getArgv ($$) { # get an argument value

my ($ref, $idx) = @_;
my $exp = sprintf(’"*(int*)($fp + %d)"’, ($idx + 2)<<2);
return gdb::eval($exp);

}
sub getRetv ($) { # get a return value

return gdb::eval(’$eax’);
}
...

}

5 Related Work

Dynamic weaving AOP systems for Java were reported in several articles [2,3].
ARVE uses a symbolic debugger for weaving and works on multiple debuggers.
ARVE is able to take an executable file compiled from C/C++ language as a
weaving target.

Dynamic binary instrumentation techniques reported in articles [4,5] take an
executable file as a patching target. ARVE only uses a script language to de-
scribe a patching source. Compared to their binary approach, our script approach
has a disadvantage in runtime efficiency, but has advantages in portability and
changeability of the patching software.

The aspect of ARVE is written in script language. ARVE has a definite in-
terface with the symbolic debugger, and can use a different symbolic debugger
for each platform. These features are derived from the ARVE design policy,
improving portability and portability of a verification script.

6 Future Work

We are working on three plans. The first plan is to extend the ARVE kernel
to support multi-process environments. In our experiment on an Apache server,
we had difficulty in tracing many processes forked by the server. If ARVE sup-
ports an aspect among multi-processes and automatically attaches to multiple
processes, the runtime verification aspect concerning IPC (Inter Process Com-
munication) can be naturally described in a single aspect.

The second plan is to prototype more useful examples of a verification assets.
One instance of a verification asset will be simple but useful scripts for visu-
alizing the target execution like the Tracer. Another instance will be slightly
more complex script for monitoring an execution trace by a formal specification.

ARVE: Aspect-Oriented Runtime Verification Environment 95

A regular expression used in TraceChecker is one of the formal specifications, but
is limited in descriptive power for monitoring. The more powerful specification
methods for monitoring are reported in articles [6,7], and will serve as useful
references.

The third plan is to apply ARVE to an execution environment for model-
based testing [8]. In order to perform effective runtime verification, we need
some way of generating verification scripts from upstream design specifications.
In model-based testing, we can generate test cases from a formal specification. By
converting these test cases to verification script, ARVE automates conformance
testing. ARVE cannot only monitor the relations between input and output in the
testing, but also can monitor internal events and states of IUT (Implementation
Under Test) by controlling the debugger.

7 Summary

We have presented a concept of verification assets and have explained ARVE
as a means of realizing verification assets. ARVE enables development of a test
program in script language and in the aspect-oriented paradigm, and achieves
independence from an underlying symbolic debugger. We have presented two
examples of verification assets, namely an execution tracer and a trace checker.
We have shown some details of optimization for reducing runtime overhead.

References

1. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.: An
Overview of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
327–355. Springer, Heidelberg (2001)

2. Popovici, A., Gross, T., Alonso, G.: Dynamic Weaving for Aspect-Oriented Pro-
gramming. In: AOSD 2002: Proceedings of the 1st International Conference on
Aspect-Oriented Software Development, pp. 141–147. ACM Press, New York (2002)

3. Suvée, D., Vanderperren, W., Jonckers, V.: JAsCo: an aspect-oriented approach
tailored for component based software development. In: AOSD 2003: Proceedings
of the 2nd International Conference on Aspect-Oriented Software Development, pp.
21–29. ACM Press, New York (2003)

4. Buck, B., Hollingsworth, J.: An API for Runtime Code Patching. Int. J. High Per-
form. Comput. Appl. 14(4), 317–329 (2000)

5. Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V., Hazelwood, K.: Pin: building customized program analysis tools with
dynamic instrumentation. In: PLDI 2005: Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Implementation, pp. 190–200.
ACM Press, New York (2005)

6. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-Based Runtime Verifi-
cation. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, Springer,
Heidelberg (2004)

96 H. Shin, Y. Endoh, and Y. Kataoka

7. Stolz, V., Bodden, E.: Temporal Assertions using AspectJ. In: Fifth Workshop on
Runtime Verification (RV 2005), Electronic Notes in Theoretical Computer Science,
Elsevier Science Publishers, Amsterdam (2005)

8. Barnett, M., Grieskamp, W., Nachmanson, L., Schulte, W., Tillmann, N., Veanes,
M.: Towards a Tool Environment for Model-Based Testing with AsmL. In: Petrenko,
A., Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931, pp. 252–266. Springer, Heidel-
berg (2003)

From Runtime Verification to Evolvable Systems

Howard Barringer1, Dov Gabbay2, and David Rydeheard1

1 School of Computer Science, University of Manchester,
Oxford Road, Manchester, M13 9PL, UK

{howard.barringer,david.rydeheard}@manchester.ac.uk
2 Department of Computer Science, Kings College London,

The Strand, London, WC2R 2LS, UK
dov.gabbay@kcl.ac.uk

Abstract. We consider evolvable computational systems built as hier-
archies of evolvable components, where an evolvable component is an
encapsulation of a supervisory component and its supervisee. Here, we
extend our prior work on a revision-based logical modelling framework
for such systems to incorporate programs within each component. We
describe mechanisms for combining programs, possibly in different lan-
guages, from separate components and outline an operational semantics
for programmed evolvable systems. We show how supervisory compo-
nents extend run-time verifiers/monitors with capabilities for diagnosis
and change. We illustrate the logical modelling using an example of an
automated bank teller machine.

1 Introduction

We are interested in developing theories and tools to support the construction
and running of safe, robust and controllable systems that have the capability
to evolve or adapt their structure and behaviour dynamically according to both
internal and external stimuli. Many computational systems have this capabil-
ity. Examples include: supervisory control systems for, say, reactive planning,
modelling evolving business processes, systems for adaptive querying, respon-
sive memory management, dynamic network routing, autonomous software re-
pair, data structure repair, and adaptive hybrid systems.

Runtime verification techniques show considerable promise (and some return)
for establishing the correctness of systems at runtime by monitoring system
behaviour against a behavioural specification. This is particularly useful for sys-
tems that are too large for static verification techniques. Typically, in runtime
monitoring and verification, when conformance fails, an error is reported and
the system halted, possibly with some diagnostic data returned. This is fine for
runtime verification applied during system simulation. However, for real-time on-
line systems, fault diagnosis and system recovery is required, which in general
will mean modification of the running system. When such additional capabili-
ties are in place, the overall dynamically-monitored system becomes an evolvable
system. The notion of evolvability which we explore here shares some features
with Aspect-Oriented Programming [5].

O. Sokolsky and S. Tasiran (Eds.): RV 2007, LNCS 4839, pp. 97–110, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

98 H. Barringer, D. Gabbay, and D. Rydeheard

In [1,3,4], we introduced evolution at a level of abstraction that allows us to
describe systems that are constructed as a hierarchical assembly of evolvable
(software and/or hardware) components. We model (and implement) evolv-
able components as a pairing of a supervisor and its supervisee component,
where the supervisor dynamically monitors its supervisee as a runtime verifier,
and possibly changes the supervisee so that its behaviour accords with that
required by the supervisor. This approach is a generalisation of the software

run−time monitoring,

evolutionary

change

encapsulated

as a component

monitoring

events

diagnosis and change

Supervisee

Supervisor

Fig. 1. An Evolvable Component Pairing

architecture principles that
have been developed over a
number of years, largely in
the context of business pro-
cess modelling [7]. Figure 1
depicts the pairing of a su-
pervisor component with its
supervisee as a new (evolv-
able) component. Figure 2
depicts a small hierarchical
assembly of components. It
shows both the horizontal
composition of communi-
cating components, namely
EC1, C2 and EC3 yielding the component C, and the vertical composition of
supervisors and their associated supervisees, namely E1 and C1 as EC1, E3 and
C3 as EC3, and E and C as EC. Thus instead of one overall runtime verifier
for a system, verification and evolution is localised to, and embedded within,
components in a system hierarchy. This improves the manageability of runtime
verification and system evolution for large systems and also enables us to use
evolutionary behaviour as part of system design.

We provide a logical account of these evolvable systems in which the super-
visor theory is described as a meta-level theory to the object-level supervisee

EC

EC3

C3

E3

C2

C1

E1

EC1

C

E

Fig. 2. An Example Hierarchical Assembly

From Runtime Verification to Evolvable Systems 99

theory. In other words, the supervisor theory has access to the logical structure
of the theory of the supervisee, including its predicates, formulas, state, axioms,
logical revision actions, and its subcomponent theories. This technically equips
the supervisor with sufficient capability both to observe supervisee behaviour
and to describe evolutionary object-level supervisee changes. Thus, not only can
supervisor states record observations of its own state of computation, but they
can also record observations about the object-level supervisee system. Actions
at the meta-level update the state of the supervisor and, as a consequence of be-
ing meta to the supervisee, may also induce a transformation of the object-level
supervisee system. This provides a logical account of how systems may evolve
their structure during computation.

In this paper, we outline how the logical modelling can be extended to com-
ponents which contain programs of actions. All components may be active with
programs running in concert, but we may also model passive service-provider
systems in this approach. Components within one system may use different pro-
gramming languages: this is common in practice, for example using a separate
verification language, but seldom do such combinations come equipped with a
logical account of the combined systems. We present a structural operational
semantics for the various ways that component programs may be combined, in-
cluding, in particular, the vertical supervisor-supervisee combination of evolvable
components. This provides not only a foundation for static proof analysis of an
evolvable component hierarchy but also a natural setting for dynamic, reasoned
and programmed, control of a system’s evolution as a generalization of standard
runtime verification.

2 Upgrading ATMs

To illustrate our modelling approach to evolvable systems, we visit the world of
banking and automated teller machines (ATMs). We focus, in particular, on how
runtime monitoring programs for supervisors and basic supervisee component
programs are semantically integrated. The Bank of New Island’s old form of
ATM, although comprising distinct hardware components, such as magnetic strip
readers, note counters, keypads, displays, etc., had its local software built in an
unstructured, monolithic fashion. Only limited security checks were programmed
and certainly not easily changed (indeed the whole ATM network would need to
be shutdown for at least a day to perform even minor upgrades). The design of
the new system is such that each individual ATM will monitor, adapt and evolve
its behaviour, in particular its security checking, to fit best with the bank’s and
their customers’ desires and expectations. The individual software components
used in the ATM will themselves also be evolvable and the network of ATMs
will naturally support dynamic co-evolution.

The old banking system is modelled as a component assembly comprising
a banking centre which holds the records and a number of automated teller

100 H. Barringer, D. Gabbay, and D. Rydeheard

ATM
n

1
ATM

3..
ATM

ATM
2..

BankingSystem

Bank

Records

Dispenser

Keypad

Reader
Card

Display

ATM

Note

Fig. 3. The banking system component structure

machines (ATMs). Figure 3
shows an ATM linked to
a central bank component;
the ATM component has
four communicating sub-
components. In [1], we out-
lined specifications for the
overall structure of the
banking system, its ATMs,
together with simplified
card-reader and note-
dispenser components. Only basic actions were specified. In particular, we did
not present a formalisation of the programs controlling the actions of the card
reader and note dispenser. Here, we introduce programs over the specified ac-
tions of a component and incorporate these within the component. Given the
differing roles of the supervisor and supervisee, different programming languages
for these components may be appropriate. We first consider just the card-reader
component and describe the control of its actions via a (very basic) guarded
command style program. We then consider a supervisor component for the card
reader, whose role is to monitor the patterns of acceptances and rejections
of cards and, should the behaviour fall outside acceptable norms, modify, i.e.
upgrade, the card reader’s security level and associated card checking mecha-
nisms. The temporal nature of the supervisory program can readily be captured
via a combination of declarative temporal logic runtime monitors with imper-
ative guarded command programs for the diagnosis and possible evolutionary
change.

The card-reader component for security level 0, CardReader0, is simplified to
holding the account number and PIN for the card currently in the card reader
and any cards that have not been returned to the customer. The cardIn action,
defined when no card is present, makes the account number and PIN of the
card a state observation. The action getUserP in() is a shared action with the
keyboard component (not specified here) and yields the user supplied PIN value.
Validation of the current card is performed by the checkP in action; each call
increments the number of attempts to verify the card’s PIN and then, if the user
supplied PIN is the same as the PIN of the current card, cardAccepted is added
to the current state. The cardOut action simply removes the observation from
the state. The swallowCard action removes the currentCard observation and
adds the fact that the card is swallowed as well as its rejection.

The card reader’s control program loops endlessly. It first reads the account
number and PIN from the input card, gets a user supplied PIN and attempts to
validate it. If validation succeeds in less than three attempts, the card is returned
(we are not concerned with other account actions that may then have followed).
If validation does not succeed within three attempts, the card is swallowed and
the reader becomes ready to accept another card.

From Runtime Verification to Evolvable Systems 101

CardReader0

Observation Predicates
currentCard : Account × Pin
attempts : 0..3
cardAccepted, cardRejected
swallowedCard : Account × Pin

Constraints

unique
dfn
=

∀a1, a2 : Account, p1, p2 : Pin ·
((currentCard(a1, p1) ∧ currentCard(a2, p2))

⇒ (a1 = a2 ∧ p1 = p2)) ∧
¬(cardAccepted ∧ cardRejected) ∧
∀a : Account, p1, p2 : Pin ·

((swallowedCard(a, p1) ∧ swallowedCard(a, p2)) ⇒ (p1 = p2))

Actions
cardIn(acc : Account, pin : Pin)

pre {¬∃a : Account, p : Pin · currentCard(a, p)}
add {currentCard(acc, pin), attempts(0)}
del {cardAccepted, cardRejected, attempts(n) | n ∈ 1..3}

cardOut()

pre {currentCard(acc, pin)}
add {}
del {currentCard(acc, pin)}

getUserP in(userP in : Pin)

pre {}
add {}
del {}

checkP in(userP in : Pin)

pre {attempts(n), n < 3, currentCard(acc, pin)}
add {attempts(n + 1)} ∪ {cardAccepted | pin = userP in}
del {attempts(n)}

swallowCard()

pre {currentCard(acc, pin), ¬cardAccepted}
add {swallowedCard(acc, pin), cardRejected}
del {currentCard(acc, pin)}

Program
[cardIn(?acc, ?pin);

[¬(cardAccepted ∨ cardRejected) →
getUserP in(?userP in);
checkP in(userP in);
[¬cardAccepted ∧ attempts(3) → swallowCard()
[]cardAccepted → cardOut()
]

]∗

]∗

The new banking system is to be dynamically upgradable. The card reader is
therefore reconstructed as an evolvable component by pairing it with a

102 H. Barringer, D. Gabbay, and D. Rydeheard

supervisory component and encapsulating the pair as a single component. A
specification for the structure and actions of the supervisor component is given
below. There are a number of different types of temporal criteria that may
be dynamically monitored. For example, the system may monitor the ratio of
rejected to accepted cards over a rolling 24-hour period, or on a daily basis, or
over a fixed number of night-time hours, etc. The supervisor thus contains a
predicate criterion pairing a criterion type and value – the latter may represent
time-series data in order to compute rolling ratios, etc.

CardReaderSupervisor meta to cid : CardReaderlevel

Types

CriterionType
dfn
= {rejectsPerHour, usersPerHour, . . .}

CriterionV alue
dfn
= . . .

Functions
updateCriterion : CriterionType × CriterionV alue × Int × T ime

→ CriterionV alue

Observation Predicates
clock : T ime
criterion : CriterionType × CriterionV alue
securityUpgrade :Int × stateTransformer ×

componentTransformer × schemaTransformer
holds : formula × ConfigName
current : ConfigName

Constraints . . .

Actions

observeAccept(X : 2CriterionType)

pre {current(c), clock(t),
∧

ct∈X criterion(ct, cvct)}
add {holds(cid.cardAccepted, s(c)), current(s(c)),

∧

ct∈X criterion(ct, updateCriterion(ct, cvct, 1, t))}
del {current(c),

∧

ct∈X criterion(ct, cvct)}

observeReject(X : 2CriterionType)

pre {current(c), clock(t),
∧

ct∈X criterion(ct, cvct)}
add {holds(cid.cardRejected, s(c)), current(s(c)),

∧

ct∈X criterion(ct, updateCriterion(ct, cvct, 0, t))}
del {current(c),

∧

ct∈X criterion(ct, cvct)}

upgradeSecurityChecking()

pre {current(c), securityUpgrade(level, st, ct, cs),
component(thisComp as [cid
→ 〈CardReaderlevel, , , 〉])}

add {current(s(c)), component(ct(thisComp))
evolve(st, ct(thisComp), cs(CardReaderlevel), s(c))}

del {current(c), component(thisComp)}

From Runtime Verification to Evolvable Systems 103

Before presenting the supervisor’s monitoring program, a few words of explana-
tion on the above actions are necessary. The basic monitoring actions update
the criterion predicate according for the associated criteria types. The evo-
lutionary action upgradeSecurityChecking() specifies the potentially complex
operation of updating the card reader’s security checking procedures. To keep
things simple, we suppose that the card reader supervisor has pre-programmed
transformations that it can apply to the card reader. Recall that the card reader
component performed very basic checking. A higher level vetting may include,
for example, a check with the bank on the card’s recent transaction history to
determine whether its current use is out of the norm, and then, if so, to pro-
ceed through further security checks, e.g. via questions agreed previously with
the customer. It may also be possible to invoke other forms of unique customer
identification, e.g. finger prints, iris prints, etc., depending upon hardware capa-
bility and information stored on chip. The upgradeSecurityChecking() action
schema abstracts the update via three transformations that are stored in the
supervisor’s state. The predicate securityUpgrade(level, st, ct, cs) records the
fact that st, ct and cs are, respectively, state, component instance and compo-
nent schema transformers which yield a card reader at security level level. These
transformers are applied in the appropriate way to the observation state, compo-
nent instance map and schema map of the object-level configuration for the card
reader component by the addition of a suitably instantiated evolve predicate in
the supervisor’s observation state.

From past analyses of card use, the bank finds that it is acceptable for (i)
the hourly average of retries on PINs not to exceed one during daytime unless
there’s been very high usage over the past 24 hour period, and (ii) the hourly
average of retries to be no more than 2 during the wee night hours, again unless
the usage has been exceptionally low over the past 24 hours. The Bank of New
Island governors believe that patterns of behaviour falling outside these norms
warrant a higher level of security checking. We can capture this monitoring via
a supervisor program in which temporal formulas, for example Eagle formulas
[2], are used to define the acceptable norms. The program construct

monitor using 〈Actions〉 where 〈Bindings〉
behaviour 〈Formula〉
[on success 〈Program〉]
[on failure 〈Program〉]

describes a runtime monitor that checks conformance of the supervisor’s state
against the given formula whenever any of the specified actions are executed. As
soon as the observed temporal behaviour matches the specified logical formula,
the (optional) success continuation program is executed. On the other hand, as
soon as the run-time behaviour can be determined not to match the specified be-
haviour, the (optional) failure continuation program is executed. As an example,
we give a simple card reader monitoring program:

104 H. Barringer, D. Gabbay, and D. Rydeheard

Program
[monitor using observeAccept, observeReject where

a
dfn
= ιx st criterion(rejectsPerHour, x)

u
dfn
= ιy st criterion(usersPerHour, y)

t
dfn
= ιz st clock(z)

daytime(t)
dfn
= 3 ≤ hour(t) ∧ hour(t) < 22

behaviour
always((daytime(t) ⇒ a ≤ 1 ∨ overpastday(t, u > 20)) ∧

(¬daytime(t) ⇒ a ≤ 2 ∨ overpastday(t, u < 2)))
on success [status(stop) → stop

[] status(abort) → resetCardReader()]
on failure upgradeSecurityChecking()

]∗

The card reader supervisor observes the accepts and rejects of the card reader
via observeAccept() and observeReject() actions. The bindings define the av-
erage number of rejects per hour and of users per hour given by the criterion
predicate, and also the time given by the clock predicate. The temporal formula
characterises the desired behaviour. Because it is an always formula, it can eval-
uate to true only when the program of the card reader terminates. For normal
termination with status stop, the monitoring program also stops. For abnormal
termination with status abort, the supervisor resets the card reader (we do not
define this here). On the other hand, should the sequence of observations lead to
criterion values that do not satisfy the temporal formula, then the failure con-
tinuation program, the upgradeSecurityChecking() action of the card reader
supervisor, is executed to upgrade the card reader to a higher security level. As
the monitor construct is embedded within a loop, once the upgrade is complete,
monitoring will be resumed.

3 A Logical Framework

We now give an overview of a revision-based logical framework which provides
an interpretation for descriptions of evolvable component systems, such as that
of the ATM above. A full description of this framework may be found in [1].

3.1 States, Configurations and Revision Actions

States of systems are expressed in terms of sets of formulas which are ground,
i.e. no free variables, and atomic, i.e. consisting only of applications of predicates
to terms. Such formulas are ‘observations’ of a system’s computational state.
For example, the set {currentCard(5435123456789012, 1234), attempts(3)} is a
possible state of the card reader described above.

Computations are expressed in terms of actions which ‘revise’ states. For
states which are sets of formulas, these revisions take on a particularly simple
form, namely the addition of new formulas, possibly with the deletion of some

From Runtime Verification to Evolvable Systems 105

existing formulas. For example, the swallowCard action of the card reader re-
vises the above state to become the state:

{swallowedCard(5435123456789012, 1234), cardRejected, attempts(3)}.

When a state Δ is updated by an action α to become state Δ′, we write Δ
α−→ Δ′.

A configuration corresponds to the full logical structure of a component hi-
erarchy. A configuration Γ = 〈Δ, Θ, Σ, Π, χ〉 consists of a tree-structured state
Δ, i.e. a set of ground atomic formulas allocated to each node of the hierarchy,
a component instance hierarchy Θ and a schema hierarchy Σ. Access to ele-
ments of these hierarchies are provided by well-formed paths. Full details of this
structure are found in [1]. New to this account are the remaining elements of
the configuration, consisting of a program structure Π and a program status χ.
The form of these is described in the next section. The definition of revision by
actions may be extended to tree-structured states, using paths to identify the
location of a revision.

3.2 Meta-view Relations

In the description of an evolvable card reader consisting of an object-level com-
ponent, CardReader0, and a meta-level component, CardReaderSupervisor,
the states of the two components must be in accord, in that what is asserted to
hold at the meta-level of the object-level system, must indeed hold. Moreover,
the supervisor state may assert the existence of constraints, actions and pro-
grams at the object-level, which therefore must exist. Further, when an evolve
predicate is present in the meta-level state, the required change of object-level
structure must occur. These requirements are expressed as ‘meta-view’ relations.

Definition 1 (State meta-view). Let WM and W be the typed first-order
theories for meta-level and object-level systems respectively. We say that ΔM

(from a configuration ΓM of WM) is a state meta-view of a configuration Γ =
〈Δ, Θ, Σ, Π, χ〉 of theory W if, for any valid non-empty path of basic (i.e. non-
evolvable) component identifiers p in ΔM

– for all object-level formulas ϕ and any configuration name c, if
p.{current(c), holds(ϕ, c)} ⊆ ↓ΔM, then ↓Δ |=W ϕ;

– for all component instance maps θ, if p.component(θ) ∈↓ΔM, then θ ⊆ Θ;
– for all schema definition maps σ, if p.schema(σ) ∈↓ΔM, then σ ⊆ Σ;
– for all program structures π, if p.program(π) ∈↓ΔM, then π = Π.

We also say that Γ M is a meta-configuration for Γ .

Here, ↓Δ is the flattened form of the tree-structured state Δ. When this rela-
tionship is extended to all levels of a component hierarchy in a configuration, we
say that the configuration is state meta-consistent.

106 H. Barringer, D. Gabbay, and D. Rydeheard

Definition 2 (Transition meta-view). Given meta-level configurations, ΓM=
〈ΔM, ΘM, ΣM, ΠM, χM〉 and ΓM′ = 〈ΔM′, ΘM′, ΣM′, ΠM′, χM′〉 of component theory
WM , and, at object-level, Γ = 〈Δ, Θ, Σ, Π, χ〉 and Γ ′ = 〈Δ′, Θ′, Σ′, Π ′, χ′〉 of
component theory W , such that ΔM, ΔM′ are, respectively, state meta-views of Γ ,
Γ ′, we say that the pair 〈ΔM, ΔM′〉 is a transition meta-view of 〈Γ, Γ ′〉, if whenever
for any valid non-empty path of basic (i.e. non-evolvable) component identifiers p

in ΔM,
p.{evolve(δ, θ, σ, π, c), current(c)} ⊆ ↓ΔM′

and Δ′ = δ(Δ) is consistent in theory W ′, where W ′ is the component theory
W with component instance map Θ updated to Θ′ = Θ † θ, component schema
definitions Σ updated to Σ′ = Σ † σ, and program structure updated Π updated
to Π ′ = π(Π), then Γ ′ = 〈Δ′, Θ′, Σ′, Π ′,run〉.

Furthermore, we say that the configuration pair 〈ΓM, ΓM′〉 is a transition meta-
configuration pair for 〈Γ, Γ ′〉 and write tmcp(ΓM, ΓM′, Γ, Γ ′).

4 Including Programs in Component Theories

4.1 Evolvable Component Structures

We now consider how to incorporate programs into a hierarchy of evolvable
components. There are several issues which need to be addressed when each
individual component has a program associated with it:

– In an assembly of components, how do we determine the overall computation
from that of the individual programs?

– In cases where programs may terminate normally or abort their computa-
tion abnormally, how does this behaviour in a component affect the overall
computational behaviour of the system?

– How are the monitoring, diagnostic and evolutionary aspects of a supervisor
expressed in terms of a program?

To formalise answers to these, we (1) introduce combinators for programs corre-
sponding to way we assemble components, (2) present an operational semantics
of these combinators, (3) include explicitly the notion of the ‘status’ of a program
in the semantics, so that the effect of the status of individual programs on the
overall computation can be expressed, and (4) introduce a specific monitoring
language for supervisors.

For evolvable systems, there are two ways that components may be combined.
The ‘horizontal’ combination of components allows components to communicate
via synchronised joint actions. The corresponding combination of programs is

Π with Π1, Π2

denoting the main program Π of a component instance C with sub-component
programs Π1 and Π2 of sub-component instances C1 and C2 of C.

From Runtime Verification to Evolvable Systems 107

The ‘vertical’ combination of components is that of the supervisor/supervisee
pairing used to model evolvable components. We write

ΠM meta to ΠO

for the combination of a supervisor’s program ΠM (at a meta-level) with that
of the program ΠO of its supervisee (at an object-level).

To make the semantics specific and to correspond to the example above of au-
tomated bank teller machines, we introduce two simple programming languages.
The first is a language of guarded commands, built from basic actions α, and
standard constructs:

Π ::= α | stop | Π1; Π2 | [[]igi → Πi] | Π∗

The second language is that of supervisory control for meta-level components.
We reuse the language of guarded commands, extending it with a monitoring
construct:

monitor(A, ϕ, Π1, Π2)

This is abstract syntax for the monitoring programs that we introduced in the
banking example above. The set A is that of supervisor actions at which the
monitoring events take place, ϕ is the monitoring formula (in the above example
we use a temporal logic to express monitoring formulas, but other logics may
be used instead), Π1 is the program that runs in the case when the monitoring
succeeds i.e. the formula becomes satisfied, and Π2 is the program that runs
when the monitoring fails i.e the formula becomes falsified.

4.2 An Operational Semantics

We provide an SOS-style [6] transition semantics. The semantics of a program
structure Π is a labelled relation between configurations which we write as

Γ
α−→ Γ ′,

where α is the current action undertaken to transform configuration Γ to Γ ′.
For a component configuration Γ = 〈Δ, Θ, Σ, Π, χ〉, we write Γ [Π ′, χ′] for the
configuration 〈Δ, Θ, Σ, Π ′, χ′〉. Much of the semantics follows standard guarded-
command language semantics [6]. We concentrate here on monitoring programs
and the combinators corresponding to component assembly.

The first rule states that the semantic relation α−→ is indeed an extension
of the revision relation and we introduce the run program status. Thus, for a
program which consists of a single action α with precondition pre-α1:

↓Δ |= pre-α Δ
α−→ Δ′

〈Δ, Θ, Σ, α,run〉 α−→ 〈Δ′, Θ, Σ,null,run〉
1 For the case of an action for which the precondition is not satisfied, the resulting

program status is not run but is abort, with suitable rules for the abort status.

108 H. Barringer, D. Gabbay, and D. Rydeheard

The semantics of monitoring programs of the form monitor(A, ϕ, Π1, Π2) re-
quire us to ‘unfold’ the monitoring formula ϕ as the computation proceeds. The
exact form of this depends upon the logic used to express monitoring formulas,
in particular, temporal operators unfold as future obligations become satisfied.
Techniques for this are well-known (see e.g [2]). We thus assume a relation of
the form Γ, ϕ

α−→ Γ ′, ϕ′ where ϕ′ is the unfolding of ϕ after the action α in the
context of the two configurations Γ and Γ ′. The rules for monitoring are:

α ∈ A, Γ, ϕ
α−→ Γ ′, ϕ′, ϕ /∈ {�, ⊥}

Γ [monitor(A, ϕ, Π1, Π2),run] α−→ Γ ′[monitor(A, ϕ′, Π1, Π2),run]

α ∈ A, Γ, ϕ
α−→ Γ ′, �

Γ [monitor(A, ϕ, Π1, Π2),run] α−→ Γ ′[Π1,run]

α ∈ A, Γ, ϕ
α−→ Γ ′, ⊥

Γ [monitor(A, ϕ, Π1, Π2),run] α−→ Γ ′[Π2,run]

The first rule is the case when monitoring continues with a revised formula,
the second and third rules are the cases when monitoring succeeds and the for-
mula is satisfied, and the case when monitoring fails and the formula is falsified.
There are also rules for the case where the object-level system terminates, either
normally or with failure.

We now turn to evolvable components, i.e. the supervisor/supervisee pairing
of a a meta-level to an object-level system. The actions of such a combination
are of three forms:

〈αobserve, α〉, a paired action consisting of a meta-level observation action
αobserve executed in synchrony with an object-level component action α;
〈αquery , 〉, a meta-level query action2 αquery executed in isolation of the
object-level component, but leaving the object-level system unchanged;
〈αevolve, 〉, a meta-level evolution action αevolve with no explicit object-level
action, but inducing an object-level system change.

The semantics of paired actions is:

↑MΓ [ΠM ,run] αM−→↑MΓ ′[Π ′
M , χ′

M] ↑O Γ [ΠO,run] αO−→↑O Γ ′[Π ′
O, χ′

O]
where tmcp(↑MΓ, ↑MΓ ′, ↑O Γ, ↑O Γ ′)

Γ [ΠM meta to ΠO,run]
〈αM ,αO〉−→ Γ ′[Π ′

M meta to Π ′
O, χ′

M]

Here, for a configuration Γ of a supervisor/supervisee pairing, ↑MΓ is the con-
figuration of the supervisor (at the meta-level) and ↑O Γ is the configuration
of the supervisee (at the object-level). This rule says: if the supervisor program
makes an αM transition, and the supervisee program makes an αO transition,
then the combination program may make a 〈αM , αO〉 transition, provided that

2 The query action is typically used when the supervisee program has terminated and
the supervisor needs to query the reason for termination.

From Runtime Verification to Evolvable Systems 109

the configurations of the supervisor before and after the transition, and those
of the supervisee, are related as a transition meta-configuration pair (see Defi-
nition 2), i.e. the action of the supervisor tracks that of the supervisee so that
the required relationship holds. The program status of the final system is that
of the supervisor after its action, giving the supervisor overall control of the
computation. The rule for query actions is similar, except that there is no αO

action and therefore the configuration of the supervisee remains unchanged.
The evolution action is a key to the whole account. Here an action is under-

taken by the supervisor which induces a change in the supervisee, without an
explicit supervisee action. The semantics of this is expressed in the following
rule.

↑MΓ [ΠM ,run] αM−→↑MΓ ′[Π ′
M , χ′

M]
Π ′

O = Π(↑O Γ ′), where tmcp(↑MΓ, ↑MΓ ′, ↑O Γ, ↑O Γ ′)

Γ [ΠM meta to ΠO,run]
〈αM ,〉−→ Γ ′[Π ′

M meta to Π ′
O, χ′

M]

Again, the crucial condition linking the configuration of the supervisee before
and after the supervisor’s evolution action is the transition meta-view relation.

We now look briefly at the semantics of the horizontal composition of com-
ponents. For a configuration Γ consisting of a component with configuration
↑0 Γ which has two immediate subcomponents with configurations ↑1 Γ and ↑2 Γ
several actions are possible. We consider here only one case, the action of a com-
ponent which consists of a ‘communication’ between its two subcomponents. In
this case, the action α of the component is defined to be the joint action α1||α2
of the two subcomponents, with semantics:

↑0 Γ [Π,run] α−→↑0 Γ ′[Π ′, χ′
0] ↑1 Γ [Π1,run] α1−→↑1 Γ ′[Π ′

1, χ
′
1]

↑2 Γ [Π2,run] α2−→↑2 Γ ′[Π ′
2, χ

′
2] χ′ = (χ′

1 = abort?χ′
1 : χ′

2)
Γ [Π with Π1, Π2, run] α−→ Γ ′[Π ′ with Π ′

1, Π
′
2, χ′]

As an example of the semantics, consider the specification of an evolvable
bank card reader in Section 2. The CardReaderSupervisor has a monitoring
program which, when the monitoring fails because the pattern of activities falls
outside its requirements, invokes the upgradeSecurityChecking action. To in-
terpret this, the evolution action rule applies. This says that, if the supervisor’s
status is run, then the result of the upgradeSecurityChecking action is a su-
pervisor/supervisee configuration Γ ′ whose object-level configuration ↑O Γ ′ is
related to the meta-level as a transition meta-configuration pair (Definition 2).
This relation says that the object-level card reader is that provided by the evolve-
formula added to the state by the upgradeSecurityChecking action, i.e. a new
card reader with an upgraded security vetting system. The rule says that the
program for the supervisor is the continuation after the evolution step and the
program of the card reader is that supplied with the new card reader.

We have thus demonstrated how programmed monitoring and evolutionary
change may be described in terms of a revision-based logic and a transition-based
operational semantics.

110 H. Barringer, D. Gabbay, and D. Rydeheard

5 Conclusions

One starting point for this work lies in the relationship between supervisory
control systems and runtime monitoring and verification. To explore this link,
we have shown how programs may be incorporated into a logical account of
evolvable component systems, using a transition-based operational semantics
to capture the interaction of programs amongst components, in particular for
components which have supervisory monitoring and control. We are currently
developing a corresponding trace-based denotational semantics.

As a revision-based logic, the framework may be implemented to provide a
logical abstract machine. The implementation requires automated reasoning tools
to establish the validity of action application and of meta-view relations. Such
a machine can be used to prototype evolvable systems, or, when run alongside
an actual evolvable system, it can provide a mechanism for runtime verification.
This work thus provides not only a foundation for static proof analysis but
also a natural setting for dynamic, reasoned and programmed, control of system
evolution as a generalization of standard runtime verification.

References

1. Barringer, H., Gabbay, D., Rydeheard, D.: Logical modelling of evolvable compo-
nent systems: Part (I) A logical framework. Submitted for publication (2007), See
http://www.cs.manchester.ac.uk/evolve

2. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Program monitoring with LTL in
Eagle. In: Proceedings of PADTAD 2004, Parallel and Distributed Systems: Testing
and Debugging, Santa Fe, New Mexico, USA (2004)

3. Barringer, H., Rydeheard, D., Gabbay, D.: A logical framework for monitoring
and evolving software components. In: TASE 2007. Proceeding of the First Joint
IEEE/IFIP Symposium on Theoretical Aspects of Computer Science, Shanghai,
China, June 2007, IEEE Computer Society Press, Los Alamitos (2007)

4. Barringer, H., Rydeheard, D., Warboys, B., Gabbay, D.: A revision-based logi-
cal framework for evolvable software. In: SE 2007. Proceeding of IASTED Multi-
Conference: Software Engineering, Innsbruck, Austria, pp. 78–83 (2007)

5. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M.,
Irwin, J.: Aspect-oriented programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP
1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

6. Plotkin, G.D.: A structural approach to operational semantics. Technical Report,
DAIMI FN-19, University of Aarhus (1981)

7. Warboys, B.C., Snowdon, R.A., Greenwood, R.M., Seet, W., Robertson, I., Morri-
son, R., Balasubramaniam, D., Kirby, G., Mickan, K.: An active architecture ap-
proach to cots integration. IEEE Software - Special Issue on Incorporating COTS
into the Development Process 22(4), 20–27 (2005)

http://www.cs.manchester.ac.uk/evolve

Rule Systems for Run-Time Monitoring:

From Eagle to RuleR

Howard Barringer1, David Rydeheard1, and Klaus Havelund2,�

1 School of Computer Science, University of Manchester, Oxford Road, Manchester,
M13 9PL, UK

{Howard.Barringer,David.Rydeheard}@manchester.ac.uk
2 NASA’s Jet Propulsion Laboratory, California Institute of Technology, Pasadena,

CA 91109, USA
Klaus.Havelund@jpl.nasa.gov

Abstract. In [3], Eagle was introduced as a general purpose rule-based
temporal logic for specifying run-time monitors. A novel and relatively
efficient interpretative trace-checking scheme via stepwise transformation
of an Eagle monitoring formula was defined and implemented. However,
application in real-world examples has shown efficiency weaknesses, espe-
cially those associated with large-scale symbolic formula manipulation.
In this paper, after briefly reviewing Eagle, we introduce RuleR, a
primitive conditional rule-based system, which we claim can be more
efficiently implemented for run-time checking, and into which one can
compile various temporal logics used for run-time verification.

1 Introduction

In earlier work, the rule-based temporal logic Eagle [3] was developed as a
generalisation of the plethora of logics which have been used for the specification
of behavioural system properties and which can be dynamically checked either
on-line throughout an execution of the system or off-line over an execution trace
of the system. We showed that Eagle supported future and past time logics,
interval logics, extended regular expressions, state machines, logics for real-time
and data constraints, and temporal-based logics for stochastic behaviour.

The Eagle logic is a restricted first order, fixed-point, linear-time temporal
logic with chop (concatenation) over finite traces. As such, the logic is highly
expressive and, not surprisingly, Eagle’s satisfiability (validity) problem is un-
decidable; checking satisfiability in a given model, however, is decidable and
that is what’s required for run-time verification. The syntax and semantics of
Eagle are succinct. There are four primitive temporal operators: © — next,
⊙

— previously, · — concatenation, and ; — chop (overlapping concatenation,
or sequential composition). Temporal equations can be used to define schema

� The work of this author was carried out at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics and Space
Administration.

O. Sokolsky and S. Tasiran (Eds.): RV 2007, LNCS 4839, pp. 111–125, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

112 H. Barringer, D. Rydeheard, and K. Havelund

for temporal formulas, where the temporal predicates may be parameterized by
data as well as by Eagle formulas. The usual boolean logical connectives ex-
ist. For example, the linear-time , ♦, U and S (always, sometime, until and
since) temporal operators can be introduced through the following equational
definitions.

max Always(Form F) = F ∧ ©Always(F)
min Sometime(FormF) = F ∨ ©Sometime(F)
min Until(Form F1,Form F2) = F2 ∨ (F1 ∧ ©Until(F1, F2))
min Since(Form F1,Form F2) = (F2 ∨ (F1 ∧

⊙

Since(F1, F2)))

The qualifiers max and min indicate the positive and, respectively, negative
interpretation that is to be given to the associated temporal predicate at trace
boundaries — corresponding to maximal and minimal solutions to the equations.
Thus ©Always(p) is defined to be true in the last state of a given trace, whereas
©Until(p, q) is false in the last state. Thus the formula Always(p) will hold on a
finite sequence from, say index i, if and only if p holds in every state from index
i up to and including the final state. Whereas, if Until(p, q) holds at index i
then q must be true at some state with index j ≥ i and p true on all states from
i up to but not including j.1

Even without data parametrization, the primitive concatenation temporal op-
erators together with the recursively defined temporal predicates take the logic
into the world of context-free expressivity thus enabling simple grammatical-
like specification of parenthesis, call return, or login logout matching. Assume
call and return are propositions denoting procedure call and return events. The
temporal formula Match(call, return) where

min Match(Form C,Form R) =
C · Match(C, R) · R · Match(C, R) ∨ Empty()

with Empty() true just on the empty sequence captures the behaviour that every
call has a matching return — a call may be followed by a (possibly empty)
sequence of matched calls and returns, followed a return, followed by another
(possibly empty) sequence of calls and returns. Parametrization of temporal
predicates by data values allows us to define real-time and stochastic logical op-
erators. To address real-time, for example, we assume that Eagle is monitoring
time-stamped states, where the state contains a variable clock holding the as-
sociated real time. Then it becomes straightforward to define real-time qualified
temporal operators such as happens before real time u.

min HappensBefore(Form F,double u) =
clock < u ∧ (F ∨ (¬F ∧ ©HappensBefore(F, u)))

It should be clear how more complex real-time, and even probabilistic, temporal
operators can be recursively defined.

We still claim that Eagle presents a natural rule/equation based language
for defining, even programming, monitors for complex temporal behavioural
1 Arguments for using other interpretations over finite traces have been put forward.

However, we have found that this simple interpretation has been adequate for our
monitoring purposes.

Rule Systems for Run-Time Monitoring: From Eagle to RuleR 113

patterns. Eagle is, however, expressively rich and in general this comes with
a potentially high computational cost, practically speaking. So one might ask
whether Eagle presents the most appropriate set of primitive temporal opera-
tors for run-time monitoring. The non-deterministic concatenation operator, as
used above in the matching parentheses example, requires considerable care in
use. In order to achieve the expected temporal behaviour pattern, the formulas
passed to Match should specify single state sequences. If that is not the case,
the concatenation operator may choose an arbitrary cut point, and therefore
skip unmatched Bs or Es in order to give a positive result. Later, but currently
unpublished, work developed such arguments further and proposed a variety of
deterministic versions of temporal concatenation and chop for run-time moni-
toring, using different forms of cut, e.g. left and right minimal, left and right
maximal, etc..

With respect to the computational effectiveness of algorithms for Eagle
trace-checking, in [3] we showed how trace-checking of full Eagle can be under-
taken on a state-by-state basis without recording the full history, even though
the logic has the same temporal expressiveness over the past as over the future;
basically, our published trace-check algorithm maintains sufficient knowledge
about the past in the evolving monitor formulas. Furthermore, we have shown
that for restricted subsets, we can achieve close to optimal complexity bounds
for monitoring; one such fragment for which we computed complexity results
was the LTL (past and future) fragment of Eagle [4]. However, considerable
care must be taken with the presence of data arguments in temporal predicates,
for an explosion in the size of the evolving monitor formula may occur.

What was clear to us at the time was that there were some practically useful
and efficiently executable subsets of Eagle. Despite the pleasing features of
Eagle, we still believe we should continue to search for a powerful and simpler
“core” logic, one that is easy and efficient to evaluate for monitoring purposes.
To that end, we present in the remainder of this paper a seemingly simpler,
lower-level, rule-based system RuleR. In Section 2 we introduce RuleR and a
simple evaluation algorithm by example. Section 3 then provides a more formal
semantic treatment and indicates how propositional temporal logic (with past
and future operators) can be compiled into RuleR. In Section 4, we then briefly
consider RuleR with rule parameters and then present brief conclusions and
indicate further work in Section 5.

2 RuleR by Example

A RuleR monitoring program comprises a collection of named rules. A rule
is formed from a condition part (antecedent) and a body part (consequent).
The rule’s condition may be a conjunctive set of literals, whereas the body is a
disjunctive set of conjunctive sets of literals, a literal being a positive or negative
occurrence of a rule name or an observation name. The idea is that rules can be
made active or inactive. For each active rule, if the condition part evaluates to
true for the current state (formed from the current observations and previous

114 H. Barringer, D. Rydeheard, and K. Havelund

obligations of the rule system), then the body of the rule defines what rules
are active and what observations must hold in the next state. As a very simple
example, consider the rule named r below in the context of some observation
named a.

r : −→◦ a, r

The rule has a vacuous condition. The rule’s body is the conjunctive set contain-
ing observation a and rule name r. If r is active at the start of monitoring, r’s
body asserts that the observation a must hold in next monitoring state and the
rule r must be active again, thus effectively asserting that observation a must
hold in all subsequent monitoring states. If, at some future state, a fails to hold,
then there will be a conflict between obligations and actuality. In this simple
case, the rule will fail at that particular point.

Figure 1 outlines a basic algorithm for monitoring a sequence of observation
states with a set of named rules. Essentially, the algorithm unfolds the active
rules according to the given input observation states. As rule bodies are disjunc-
tive, the algorithm computes sets of possible future states in order to avoid the
need for backtracking when a rule failure occurs. A rule activation state is a set
of rule name literals and observation literals. We demonstrate this algorithm in
Example 1 where we consider a set of rules that capture both past time con-
ditions and future time obligations. We will assume that we wish to monitor
some temporal behaviour of a system in terms of two properties, a and b. Thus,
we arrange for the system to be instrumented to produce an ordered sequence
of observation states and that the letters a and b denote particular propositions
over an observation state. In effect, we’ll treat an observation trace as a sequence
of sets of literals2.

create an initial set of initial rule activation states

while observations exist do
obtain next observation state

merge observation state across the set of rule activation states

raise monitoring exception if there’s no self-consistent merged state

for each of the current and self-consistent merged states,

use activated rules to generate a successor set of activation states

union successor sets to form the new frontier of rule activation states

od

Fig. 1. The basic monitoring algorithm

Example 1. We wish to monitor the constraint that whenever property a occurs
both now and in the immediate previous state then b must occur as a later
observed property. We can characterise this by the linear time temporal logic
formula ((a ∧

⊙

a) ⇒ b) where is the strict “eventually in the future”
temporal operator, or using the Eagle temporal predicates defined in Section 1
2 We don’t allow both x and ¬x to occur in an observation state, for any x.

Rule Systems for Run-Time Monitoring: From Eagle to RuleR 115

by the monitoring formula Always((a ∧
⊙

a) ⇒ ©Sometime(b)). In RuleR the
following set of rules characterise the required temporal behaviour

r0 : −→◦ r0, r1, r3 r1 : a −→◦ r2 r2 :
r3 : a, r2 −→◦ b | ¬b, r4 r4 : −→◦ b | ¬b, r4

assuming that the monitoring algorithm starts with an initial set of rule activa-
tion sets as {{r0, r1, r3}}3. Rule r0 acts as a generator rule; it ensures persistent
activity of itself together with r1 and r3, i.e. the three rules are always to be
active. The empty rule r2 is used to represent that the temporal constraint

⊙

a
holds (hence it is initially inactive). The rule r1 is then a generator for r2 and
can be viewed as the temporal rule “if we have a today then tomorrow we have
yesterday a”. Rule r4 captures the obligation b, either b holds in the next
observation state or ¬b holds together with a continued obligation to b.

For the example observation trace in the table below, we see that in step 4,
both a and

⊙

a are true (in the merged state, both a and r2 are present) and
hence rule r3 yields two possibilities for step 5. The choice with b holding true
conflicts with the observation in step 5 and therefore is eliminated. Rule r4 is
thus active and remains activated until step 7 when b is observed to hold.

Step Obs. Rule Activations Merged States
0 {} {{r0, r1, r3}} {{r0, r1, r3}}
1 {a, b} {{r0, r1, r3}} {{a, b, r0, r1, r3}}
2 {¬a, b} {{r0, r1, r2, r3}} {{¬a, b, r0, r1, r2, r3}}
3 {a, b} {{r0, r1, r3}} {{a, b, r0, r1, r3}}
4 {a, b} {{r0, r1, r2, r3}} {{a, b, r0, r1, r2, r3}}
5 {¬a, ¬b} {{b, r0, r1, r2, r3}, {¬b, r0, r1, r2, r3, r4}} {{¬a, ¬b, r0, r1, r2, r3, r4}}
6 {a, ¬b} {{b, r0, r1, r3}, {¬b, r0, r1, r3, r4}} {{a, ¬b, r0, r1, r3, r4}}
7 {¬a, b} {{b, r0, r1, r2, r3}, {¬b, r0, r1, r2, r3, r4}} {{¬a, b, r0, r1, r2, r3}}
8 {¬a, ¬b} {{r0, r1, r3}} {{¬a, ¬b, r0, r1, r3}}

But how do we determine whether any generated temporal existential obliga-
tions, such as b, have indeed been satisfied? Essentially, the rule system struc-
ture notes those rules that correspond to such obligations and then, at the end
of monitoring, one must check whether the final merged state set contains states
without those noted rules active. If there are no such states, then the given (fi-
nite) observation trace fails to satisfy the rule set. If there is at least one of the
possible final states not containing such noted rules, the observation trace satis-
fies the rule set. The approach is exactly that of the minimal and maximal rule
interpretations used in Eagle. In the above, the final set of merged states has
just one state that does not contain the noted rule r4 and hence the observation
satisfies the given rule set.

The rule set in fact contained an optimisation; the choices appearing in rules
r3 and r4 were made deterministic, either b or ¬b ∧ The determinisation thus
3 The absence of r2 from this set gives ¬r2 a positive interpretation; this is not the

case, however, for observation literals a and b where absence is taken as meaning
“undetermined”.

116 H. Barringer, D. Rydeheard, and K. Havelund

reduced the number of possible successor states that are generated at any one
time. For example, if the rules r3 and r4 had been defined as

r3 : a, r2 −→◦ b | r4 r4 : −→◦ b | r4

the rule activations for step 7 would be {{b, r0, r1, r2, r3}, {r0, r1, r2, r3, r4}}, yield-
ing merged states {{¬a, b, r0, r1, r2, r3}, {¬a, b, r0, r1, r2, r3, r4}}. Then, step 8
would have had {{r0, r1, r3}, {b, r0, r1, r3}, {r0, r1, r3, r4}} for rule activations and
{{¬a, ¬b, r0, r1, r3}, {¬a, ¬b, r0, r1, r3, r4}} for its merged states, one of which does
not contain the noted (minimal) rule r4 and so the observation trace, as is to be
expected, satisfies the rule set.

2.1 Inhibiting Rule Activation

The informal semantics we’ve used above has rules being activated in the next
step if they appear positively in some applied consequent of some currently
applicable rule. In particular, rules that are not mentioned in a consequent of
some rule can not be activated by that rule; however, some other rule may indeed
activate them. Consider, for example, the contrived (sub)set of rules below.

r0 : −→◦ r2|r3 r1 : −→◦ r3|r4

Assume at some stage that r0 and r1 are activated in the same step. Rule r0
therefore generates the partial successor states {r2} and {r3}. Rule r1 will then
extend these states to yield the possible (partial) states {r2, r3}, {r2, r4}, {r3}
and {r3, r4}. Suppose it was desired that rules r2 and r3 were mutually exclusive.
One way would be to modify the rules as below.

r0 : −→◦ r2, ¬r3|r3, ¬r2 r1 : −→◦ r3|r4

Assuming again both r0 and r1 active, the possible successor activation sets are
now {r2, ¬r3, r4}, {¬r2, r3} and {¬r2, r3, r4} — since the potential rule activation
set {r2, ¬r3, r3, ¬r2} is inconsistent. The negation of a rule should be interpreted
as a forced “non-activation” of the rule.

In the examples above, we indicated how various temporal conditions could
be translated into collections of these low-level single-shot (or step?) rules. In
a certain sense, rule names can be viewed as propositions denoting temporal
subformulas. However, it is important to emphasise that a negated rule name
does not correspond to the negation of a subformula that the rule name may be
viewed as representing. More strictly, one should view a positive occurrence of a
rule name as meaning that the rule will be applied and in doing so will generate
possible traces that satisfy the associated subformula. A negative occurrence of
a rule name (in the rule activation state) simply means that the rule is NOT
applied and hence places no constraints on the generation of traces.

In summary, we can use rules to activate other rules (positive appearance
of a rule in a consequent), to not inhibit activation (no mention of a rule in
a consequent), and to inhibit activation (negative appearance of a rule in a
consequent).

Rule Systems for Run-Time Monitoring: From Eagle to RuleR 117

3 Propositional RuleR Trace Semantics

We now present a formalization of propositional rule systems and an evaluation
semantics over traces of observations.

Preliminary definitions. Let X denote a set of atoms. We then use X− to denote
the set of negated atoms of X , i.e. X− = {¬x | x ∈ X}, and let X± denote the
set of literals of X , i.e. X∪X−. We use the term X-literal to refer to a member of
X±. A set of X-literals L is said to be self-consistent if and only if for any x ∈ X
it is not the case that both x ∈ L and ¬x ∈ L. Let L−∗

X denote the negative
closure of L with respect to the atoms X , i.e. the set L∪{¬l|l /∈ L, l ∈ X}. Given
LS1 and LS2 as sets of self-consistent sets of literals, the product LS1 × LS2 is
the set {ls1 ∪ ls2 | ls1 ∈ LS1, ls2 ∈ LS2, and ls1 ∪ ls2 is self-consistent}.

Rule Systems. Given disjoint sets of rule names R and observations O, a rule ρ is
a pair 〈C, B〉 where C, the condition part, is a conjunctive set of (R∪O)-literals,
and B, the body part, is a disjunctive set of conjunctive sets of (R ∪ O)-literals.
A named rule is then an association r : ρ where r ∈ R is a rule name and ρ is a
rule. A rule system RS is a tuple 〈R, O, P, I, F 〉 where R and O are, respectively,
disjoint sets of rule names and observations, and P is a set of disjointly R-named
rules over R and O, I ⊆ O± ∪R is a self-consistent subset of observation literals
and rule names, and F ⊆ R is a set of terminally excluded rule names (rule names
that may not appear in the very final monitoring state). A configuration γ for a
rule system RS is a pair 〈A, Θ〉 where A is a consistent set of R-literals, called
the activity set, and Θ is a consistent set of O-literals, called the observation
state. We also write A(γ) to denote the activity set of a configuration γ, similarly
Θ(γ) for the observation state.

We next define the interpretation of a set of literals in a configuration. The
presence of a positively signed rule name r in the activity set means that the rule
ρ associated with r is active. On the other hand, the presence of a negatively
signed rule name r, or the absence of r, in the activity set means that the rule ρ
associated with r is not active. For observation atoms, however, undefinedness of
an O-literal o, i.e. the absence of o from the observation state of the configuration,
means that the observation literal o may be either true or false.

Modelling and step relation. Let RS = 〈R, O, P, I, F 〉 be a rule system. A self-
consistent set of literals L from RS holds in a configuration γ for RS, which
is denoted by γ |= L, if and only (i) the set of rule name literals mentioned
in L is contained in the negative closure of A(γ), i.e. (L − O±) ⊆ A(γ)−∗

R ,
and (ii) observation literals within L are contained in the configuration’s set
of observations (L − R±) ⊆ Θ(γ). We can now define a single step relation
over configurations for a given named rule. This relation can then be used to
define a single step relation for a rule system. An r :ρ-step relation

r:ρ−→ between
configurations is such that γ

r:ρ−→ γ′ if and only if (i) r ∈ A(γ), (ii) γ |= C(ρ),
and (iii) there is a θ ∈ B(ρ) such that A(γ′) ∪ Θ(γ′) = θ. Then for a set of rule
names R, let Γ ′ be an R-indexed set of outcome configurations such that for each

118 H. Barringer, D. Rydeheard, and K. Havelund

r ∈ R, γ
r:ρ−→ Γ ′

r. We then define the step relation −→ between configurations
such that γ −→ γ′ if and only γ′ is a consistent union of an (A(γ) ∩ R)-indexed
set of outcome configurations from γ. Note that an empty union set is treated
as being an inconsistent union.

The single step relation for the rule system can now be used to define the
notion of an accepting run of a rule system over a given observation trace. This
requires matching obligations against actual observations. As we have adopted
a classical interpretation for observation literals (which is not the case for rule
name literals), we thus have the following.

Matching. An actual set of observation literals X is said to match an obligatory
set of literals Y if and only if X ∪ Y is self-consistent and Y ⊆ X .

Finally, we can define the language accepted by a rule system.

Language acceptance. An accepting run of a rule system RS = 〈R, O, P, I, F 〉 on
an observation trace τ = o1o2 . . . on is a sequence of configurations γ1γ2 . . . γnγn+1
such that (i) A(γ1) ∈ I, (ii) for all i ∈ 1..n the actual and obligated observations, oi

and Θ(γi) respectively, match and 〈A(γi), Θ(γi)∪oi〉 −→ γi+1, and (iii) A(γn+1)∩
F = {}. Thus, the language accepted by a rule system RS, L(RS), is the set of all
finite observation traces τ accepted by RS. Furthermore, we say a rule system RS
is violated by an observation trace τ if RS has no accepting run on τ , alternatively,
τ /∈ L(RS).

We now claim that the monitoring algorithm of Section 2 accepts an obser-
vation trace τ for a rule system RS if and only if τ ∈ L(RS). Indeed, the steps
of the algorithm closely reflect the semantic construction we have given.

3.1 Propositional Linear Temporal Logic as a Rule System

Having formally defined propositional rule systems, we are now in a position to
show how linear-time temporal logic formulas for monitoring over finite traces
can be encoded in RuleR. Our translation is based on the separation result of
Gabbay (originally 1981 but elaborated in [8]), which can then be used to show
that any mixed past, present and future linear-time temporal formula can be
translated into a collection of universal implications of the form non-strict past
formula implies pure future formula, a minor variation of the rule forms used in
the executable temporal logic MetateM [2]. Our starting point is thus to show
how such separated temporal implications can be represented in RuleR.4

The Pure Future Part. The pure future linear-time temporal formulas are
built from propositions, the boolean connectives and, or, and negation, ∧, ∨
and ¬, respectively, and a strict until and unless operator, U+ and W+. All
other standard future time operators are definable from this set. Without loss
4 Fisher’s SNF representation for temporal logic [6] is close to RuleR rule forms and

an alternative translation to a rule system could be given via SNF. However, we
believe our direct translation has interest in its own right and might lead to an
easier SNF translation.

Rule Systems for Run-Time Monitoring: From Eagle to RuleR 119

of generality, we assume formulas are further transformed in negation normal
form (NNF5), i.e. negation operators pushed inwards to propositional literals and
cancellations applied. Let WFF+ denote the set of well-formed strict future time
formulas in NNF and WFF denote the set of well-formed future time formulas
in NNF (which may include the present, i.e. propositions under no future time
operator).

We define a translation
−→
T : WFF → RuleSystem inductively over the struc-

ture of the temporal formulas. Let φ and ψ denote arbitrary members of WFF .
The base cases of the translation are straightforward, e.g. for an atom p, we have−→
T (p) = 〈{}, {p}, {}, {{p}}, {}〉, indicating a rule system with an atom p with an
initial set of active rule names containing the singleton set {p}. Negated atoms
translate in a similar way. The propositional constant true gives rise to the rule
system 〈{}, {}, {}, {{}}, {}〉 whereas false translates to a system with an empty
set of initial states. As one might expect, the logical conjunction (disjunction) of
formulas φ and ψ translate to the obvious product (union) operations that can
be defined for rule systems. This leaves the most interesting part of the trans-
lation, namely an until formula φU+ψ. Recall that the semantics of the strict
until operator gives the temporal equivalence φU+ψ ⇔ ©(ψ ∨ (φ ∧ (φU+ψ))).

−→
T (φ U+ψ) = let 〈Rφ, Oφ, Pφ, Iφ, Fφ〉 =

−→
T (φ) and

〈Rψ, Oψ, Pψ, Iψ, Fψ〉 =
−→
T (ψ)

in 〈Rφ ∪ Rψ ∪ {rφ U+ψ},
Oφ ∪ Oψ,
Pφ ∪ Pψ ∪ {rφ U+ψ :−→◦ Iψ ∪ (Iφ × {{rφ U+ψ}}),
{{rφ U+ψ}},
Fφ ∪ Fψ ∪ {rφ U+ψ}〉

For ease of understanding, we have subscripted the rule names by the subformu-
las they represent. As the until operator has a strong interpretation, requiring its
second argument to be satisfied, the associated rule name for the until formula
must be included in the F set of the rule system. As might be expected, the
translation of the unless formula differs from the until translation just in the
non-inclusion of the rule for the unless formula in the F set.

Example 2. Assume a, b, c and d are atomic propositions. The translation of
a U+b yields the rule system

〈{ra U+b}, {a, b}, {ra U+b : −→◦ b | a, ra U+b}, {{ra U+b}}, {ra U+b}〉

Similarly, the translation of a ∧ (c W+d) yields the rule system

〈{rc W+d}, {a, c, d}, {rc W+d : −→◦ d | c, rc W+d}, {{a, rc W+d}}, {}〉

Thus the translation of (a U+b)U+(a ∧ (c W+d)) yields the rule system

〈{r0, r1, r2}, {a, b, c, d},

⎧

⎨

⎩

r0 : −→◦ b | a, r0

r1 : −→◦ d | c, r1

r2 : −→◦ a, r1 | r0, r2

⎫

⎬

⎭

, {{r2}}, {r0, r2}〉

5 Some authors refer to this as positive normal form.

120 H. Barringer, D. Rydeheard, and K. Havelund

where
r0 = ra U+b, r1 = rc W+d, r2 = r(a U+b) U+(a∧(c W+d))

Past Time Temporal Queries. The pure past time fragment of linear-time
temporal logic is constructed in a mirror fashion to the pure future part, i.e. from
propositions, the boolean connectives (∧, ∨ and ¬), and just the temporal oper-
ators S− (the strict since, false at the beginning of time) and its weak version
Z− (true at the beginning of time). Without loss of generality, we assume that
past time temporal formulas are in negation normal form, i.e. with negations
pushed inwards to atomic propositions/literals and double negations cancelled.
Let us first consider the translation of pure past time temporal queries. The
temporal equivalence φS−ψ ⇔

⊙

(ψ ∨ (φ ∧ (φS−ψ))) should serve as a re-
minder of the semantics that needs to be captured by the translation. The basic
idea for handling the past is an old one, namely, we use the translation rules
to calculate the value of the temporal query as we proceed in time (rather than
evaluating the query over the history). We will use the presence of the rule
name rφS−ψ in the rule activation state to denote whether the temporal for-
mula φS−ψ held in the previous moment (similarly for rφ and rψ). We then
use a rule, named rψ:ψ S−φ?, to calculate whether rφS−ψ should be made active
because ψ held in the previous moment (similarly for the other possible way
for ψ S−φ to hold). These query rules must be universally active in order to
determine truth values for the next moment. Thus we use a rule, named say
rg.φ S−ψ?, to act as a generator (hence the “g” in its name) for a pair of (sets
of) rules that determine the truth of φS−ψ based on the previous values of its
subformulas.

rψ.φ S−ψ? : rψ −→◦ rφ S−ψ rφ.φ S−ψ? : rφ, rφ S−ψ −→◦ rφ S−ψ

rg.φ S−ψ? : −→◦ rg.φ S−ψ?, rφ.φ S−ψ?, rψ.φ S−ψ?

Naturally, our translation must take into account the fact that the subformulas
ψ and φ may be boolean combinations of pure past time temporal formulas
(represented by rule names) and/or literals. Let WFF− denote the set of pure
past temporal formulas and WFF−0 the set of present and pure past time
temporal formulas. We thus define a translation

←−
T that will translate a past time

temporal formula (from WFF−0) into an intermediate form (of a rule system)
whose initial activation set, as a disjunctive set of conjunctive sets of rule names
and/or literals, is to be viewed as representing the given temporal query. The
difference from a proper rule system is that we use the F set to represent the
initial values of rules, e.g. a formula φS−ψ must be false initially and so the rule
name ¬rφS−ψ would be included in the set F . As with the future time translation
the base cases are clear, as is conjunction and disjunction. Figure 2 shows the
translation for the interesting case of the strict since operator.

Separated Temporal Implicative Forms. We can now bring together the
above two translations

−→
T and

←−
T to generate a rule system corresponding to

the MetateM-like rule form φpast ⇒ ©ψfuture which are of universal nature,

Rule Systems for Run-Time Monitoring: From Eagle to RuleR 121

←−
T (φ S−ψ) =

let 〈Rφ, Oφ, Pφ, Iφ, Fφ〉 =
←−
T (φ) and

〈Rψ, Oψ , Pψ, Iψ, Fψ〉 =
←−
T (ψ)

in 〈Rφ ∪ Rψ ∪ {rφ S−ψ, rg.φ S−ψ?} ∪ {rφ S−ψ?x | x ∈ Iφ} ∪ {rφ S−ψ?x | x ∈ Iψ},
Oφ ∪ Oψ,
Pφ ∪ Pψ ∪

{rg.φ S−ψ? : −→◦ {rg.φ S−ψ?} ∪ {rφ S−ψ?x | x ∈ Iφ} ∪ {rφ S−ψ?x | x ∈ Iψ}}∪
{rφ S−ψ?x : x −→◦ rφ S−ψ | x ∈ Iψ} ∪
{rφ S−ψ?x : x, rφ S−ψ −→◦ rφ S−ψ | x ∈ Iφ},

{{rφ S−ψ, rg.φ S−ψ?}},
Fφ ∪ Fψ ∪ {¬rφ S−ψ}〉

Fig. 2. Translation of φS−ψ

i.e. globally hold. Assuming both φpast and ψfuture are in a negation normal form,
then, in the context of

〈Rpast, Opast, Ppast, Ipast, Fpast〉 =
←−
T (φpast)

〈Rfuture, Ofuture, Pfuture, Ifuture, Ffuture〉 =
−→
T (ψfuture)

in which we assume, without loss of generality, the rule name sets are disjoint,
the rule system below will represent the translation of the separated implicative
form, i.e. RS = T (φpast ⇒ ©ψfuture).

RS = 〈Rpast ∪ Rfuture ∪ {rg.φpast⇒ψfuture} ∪ {rx⇒ψfuture | x ∈ Ipast},

Opast ∪ Ofuture,

Ppast ∪ Pfuture ∪
{rg.φpast⇒ψfuture : −→◦ {rg.φpast⇒ψfuture} ∪ {rx⇒ψfuture | x ∈ Ipast}},

{rx⇒ψfuture : x −→◦ Ifuture | x ∈ Ipast},

{{rg.φpast⇒ψfuture , rx⇒ψfuture | x ∈ Ipast} ∪ Fpast},

Ffuture 〉

Example 3. Assuming a, b, c, p and q denote propositions, we give the RuleR
translation of the universal separated temporal implication

c ∧ (bS−a) ⇒ ©(♦p ∧♦q).

Recall that ♦p will be translated as p ∨ p, i.e. p ∨ true U+p, similarly for ♦q.
Using the following abbreviations

r0 = rg.b S−a? r1 = rb S−a?b r2 = rb S−a?a r3 = rb S−a

r4 = rtrue U+p r5 = rtrue U+q r6 = rg.c∧(b S−a)⇒©((p∨trueU+p)∧(q∨true U+q))

r7 = rc∧(b S−a)⇒©((p∨trueU+p)∧(q∨true U+q))

the rule system will thus have rules

r0 : −→◦ r0, r1, r2 r1 : b, r3 −→◦ r3 r2 : a −→◦ r3

r3 : r4 : −→◦ p | r4 r5 : −→◦ q | r5

r6 : −→◦ r6, r7 r7 : c, r3 −→◦ p, q | p, r5 | r4, q | r4, r5

122 H. Barringer, D. Rydeheard, and K. Havelund

with an initial rule activation set as {{¬r3, r0, r1, r2, r6, r7}} and the forbidden
rule set as {r4, r5}.

The correctness of our translation scheme for propositional LTL over finite traces
with respect to the given semantics for RuleR follows from the correctness of
separation, then an inductive proof establishing the correctness of the translation
of the universal separated implicative temporal forms.

4 Parameterized RuleR

The propositional RuleR system corresponds to regular-based languages, which
are a subclass of propositional Eagle. Here, we extend RuleR to include rule
definitions parameterized by rules. The evaluation strategy used on this seem-
ingly small extension increases the formal expressivity of RuleR to be beyond
context-free languages. Consider the following rule definition, indeed schema,
that has been extended to include formal rule arguments.

r(ρ) : a −→◦ b, ρ | c, r(ρ)

Suppose that the rule r is active with the propositional rule r0 substituted for
ρ, i.e. r(r0) is active. Informally, the evaluation of r(r0) will first determine the
truth of the condition part a, then, assuming it holds, continue to create a set
of activation states for the next step corresponding to {{b, r0}, {c, r(r0)}}. Let
us give a few examples that show how the expressivity of rule parameterized
RuleR jumps into the context sensitive languages.

Example 4. Consider a rule system with the rules

rb(ρ) : −→◦ b, ¬a, ρ rab(ρ) : −→◦ b, ¬a, ρ | a, ¬b, rab(rb(ρ))
rend : −→◦ rfail rfail : −→◦ rfail

together with an initial rule activation set as {{a, rab(rend)}} and the final for-
bidden rule set {rb, rab, rfail} (meaning that no occurrence of rule rb, rab, nor
rfail, may appear as an obligation in a final rule activation state). All accepted
observation traces will match against a trace of n ≥ 1 occurrences of a followed
by n occurrences of b. Essentially, barring the first a, the rule rab represents the
non-terminal S of the context free grammar S = ab | aSb in which rab’s actual
argument represents the continuation string for concatenation to the string of
a’s generated. It is straightforward to establish that the class of context free
languages are a subset of parameterized RuleR. We extend the above example
to represent traces of the form anbncm, for n, m ≥ 1. Take the rule set

rab(ρ) : −→◦ b, ¬a, ¬c, ρ | a,¬b, ¬c, rab(rb(ρ))
rb(ρ) : −→◦ b, ¬a, ¬c, ρ
rc : −→◦ c, ¬a, ¬b, rend | c, ¬a, ¬b, rc

rend : −→◦ rfail

rfail : −→◦ rfail

together with an initial activation set as {{a, rab(rc)}} and the final forbidden
rule activation set {rab, rb, rc, rfail}. This system will clearly accept traces of the

Rule Systems for Run-Time Monitoring: From Eagle to RuleR 123

form anbn (represented by the rab rule) followed by one or more c’s (determined
by the rc argument to the initial rule activation rab). Now we can encode the
intersection of the languages anbncm and ambncn (n, m ≥ 1), thus yielding the
context sensitive language containing words of the form anbncn.

rab(ρ) : −→◦ b, ¬a, ¬c, ρ | a, ¬b, ¬c, rab(rb(ρ))
rb(ρ) : −→◦ b, ¬a, ¬c, ρ
rc : −→◦ c, ¬a, ¬b | c, ¬a, ¬b, rc

ra(ρ) : −→◦ b, ¬a, ¬c, ρ | a,¬b, ¬c, ra(ρ)
rbc(ρ) : −→◦ c, ¬a, ¬b, ρ | b, ¬a, ¬c, rbc(rc1(ρ))
rc1(ρ) : −→◦ c, ¬a, ¬b, ρ

rend : −→◦ rfail

rfail : −→◦ rfail

Here the rule system has an initial activation set {{a, rab(rc), ra(rbc(rend))}} and
final forbidden rule activation set {rab, rb, rc, ra, rbc, rc1, rfail}.

As in Eagle, we can also parameterize RuleR rules by data values, thus in-
troducing variables and predicated atoms. It is through such means that RuleR
can be used for encoding/interpreting real-time and stochastic logics.
Example 5. Let us assume that each observation state is time-stamped by the
unique presence of a grounded predicate clock(t) for some real value t, e.g.
clock(49738.22264). The data parameterized rule schema

r(k : R) : clock(?n : R) −→◦ clock(?t : R), p, t − n < k |
clock(?t : R), ¬p, t − n < k, r(k − t + n)

defines a constraint that the atom p must be consistent with an observation state
within k time units from the observation state in which the rule r(k) is required
to hold. The ?n : R appearing as argument to the clock predicate name in the
rule’s condition means that the variable n is to be bound to some value from
R by the current observation state. The occurrence of clock(?t : R) in the rule
consequent means that there is an obligation on the next observation state to
binding t with some value. Suppose we have an observation state containing just
{clock(1), ¬p, r(3)}. The rule r(3), through binding n to 3, gives rise to the set
{{clock(?t : R), p, t − 1 < 3}, {clock(?t : R), ¬p, t − 1 < 3, r(4 − t)}}. If the next
actual observation state is {clock(3), ¬p}, the merge with the obligation sets
yields the frontier set {{clock(3), ¬p, r(1)}}, which gives rise, through r(1), to
obligations {{clock(?t : R), p, t − 3 < 1}, {clock(?t : R), p, t − 3 < 1, r(4 − t)}}. If
we have another observation this time with {clock(4), p} then the merge yields
the empty frontier set as 4 − 3 < 1, which appears in both possible futures,
is clearly false. Hence the actual behaviour does not conform to that required
by the initial r(3). On the other hand, had the observation state been, say,
{clock(3.9), p}, then the rule set would be satisfied.

5 Conclusions

We have introduced a low-level rule system RuleR as a kind of “byte-code”
for run-time monitoring logics. A basic monitoring algorithm was described for

124 H. Barringer, D. Rydeheard, and K. Havelund

the propositional subset of RuleR. Having presented formally the semantics
of the propositional subset, we demonstrated how linear time temporal logic
with both past and future operators can translate to such rule systems, and
then briefly, and informally, presented RuleR where rules are parameterized by
rule names. On the face of it, the propositional subset of RuleR looks rather
like a grammatical representation of the transition relation of an alternating
automaton, i.e. with conjunctive and disjunctive branching, see for example [7].
However, RuleR, even the propositional subset, has more to it; the rules have
the capability to switch other rules on or off as an evaluation of a rule system
over a trace proceeds. We are referring to such systems as reactive rule systems
/ grammars / Kripke structures [9]. Whilst regular grammars are closed under
our notion of reactivity (including switching grammar rule sets), it can easily be
shown that reactive context free grammars take us beyond context free. Some
relationship with state-alternating context-free grammars [10] is clear, however,
a more detailed study of reactive grammars and their place in the complexity
hierarchy is work in progress, see [5] for some initial results and examples. A
feature we haven’t yet mentioned is rule priority in RuleR. Given the ability
to switch rules on and off, conflicts may occur. Sometimes the conflicts may be
desired, but in other situations we may wish one rule to override another, as is
the case in defeasible reasoning. Of course, this changes the nature of the logics
expressible quite considerably. In addition to rule parameters, RuleR has data
parameters, just as in Eagle. The semantic details are not difficult and we adopt
an approach similar to that in first-order MetateM [1], but, as in Eagle, some
care needs to be taken to avoid “rule activation state set” explosion in practice.

The low-level simplicity of RuleR leads to the main advantage for its po-
tential use over Eagle. If optimal (asymptotic) complexity bounds have been
established for a particular subset logic of Eagle, such as for the LTL subset, in
general a RuleR encoding will be no better asymptotically. However, we assert
that smaller constants arise through the significant reduction in the symbolic
processing that has to be undertaken at run-time in the interpretation of Eagle
formulas. Of course, there would be a one-off translation cost from the LTL for-
mula to the appropriate rule systems. This a compilation versus interpretation
gain.

A prototype Java implementation of the monitoring algorithm for proposi-
tional RuleR has been developed, as a proof of concept. We are, however, not
yet at the stage where we can properly evaluate the practical effectiveness of
RuleR, which requires the fully parameterized version of RuleR. We hope to
report on this in the near future.

References

1. Barringer, H., Fisher, M., Gabbay, D., Owens, R., Reynolds, M.: The Imperative
Future: Principles of Executable Temporal Logic. Research Studies Press (1996)

2. Barringer, H., Fisher, M., Gabbay, D., Gough, G., Owens, R.: An Introduction. In:
Formal Aspects of Computing, vol. 7(5), pp. 533–549. Springer, London (1995)

Rule Systems for Run-Time Monitoring: From Eagle to RuleR 125

3. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-Based Runtime Verifi-
cation. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, Springer,
Heidelberg (2004)

4. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Run-time Monitoring in Eagle.
In: Brunnstein, K., Händler, W., Haefner, K. (eds.) RGU 1974. LNCS, vol. 17, p.
264. Springer, Heidelberg (2004)

5. Barringer, H., Rydeheard, D., Gabbay, D.: Reactive Grammars: An Initial Explo-
ration, Draft paper(2007), see http://www.cs.man.ac.uk/∼david/reactive.html

6. Fisher, M.D.: A Normal Form for Temporal Logics and its Applications in
Theorem-Proving and Execution. Journal of Logic and Computation 7(4), 429–
456 (1997)

7. Finkbeiner, B., Sipma, H.: Checking Finite Traces Using Alternating Automata.
Formal Methods in System Design 24(2), 101–127 (2004)

8. Gabbay, D.M.: Declarative Past and Imperative Future: Executable Temporal
Logic for Interactive Systems. In: Banieqbal, B., Pnueli, A., Barringer, H. (eds.)
Temporal Logic in Specification. LNCS, vol. 398, pp. 67–89. Springer, Heidelberg
(1989)

9. Gabbay, D.M.: Introducing Reactive Kripke Semantics and Arc Accessibility. In:
Gabbay, D.M. (ed.) To appear in Festschrift in Honour of Boaz Traktenbrot (2007)

10. Moriya, E., Hofbauer, D., Huber, M., Otto, F.: On State-Alternating Context-Free
Grammars. Theoretical Computer Science 337(11), 183–216 (2005)

http://www.cs.man.ac.uk/~david/reactive.html

The Good, the Bad, and the Ugly,

But How Ugly Is Ugly?

Andreas Bauer1, Martin Leucker2, and Christian Schallhart2

1 National ICT Australia (NICTA)
2 Institut für Informatik, Technische Universität München

Abstract. When monitoring a system wrt. a property defined in some
temporal logic, e. g., LTL, a major concern is to settle with an adequate
interpretation of observable system events; that is, models of temporal
logic formulae are usually infinite streams of events, whereas at runtime
only prefixes are available.

This work defines a four-valued semantics for LTL over finite traces,
which extends the classical semantics, and allows to infer whether a sys-
tem behaves (1) according to the monitored property, (2) violates the
property, (3) will possibly violate the property in the future, or (4) will
possibly conform to the property in the future, once the system has sta-
bilised. Notably, (1) and (2) correspond to the classical semantics of LTL,
whereas (3) and (4) are chosen whenever an observed system behaviour
has not yet lead to a violation or acceptance of the monitored property.

Moreover, we present a monitor construction for RV-LTL properties in
terms of a Moore machine signalising the semantics of the so far obtained
execution trace.

1 Introduction

Runtime verification of a given correctness property ϕ formulated in linear tem-
poral logic LTL [Pnu77] aims at determining the semantics of ϕ while executing
the system under scrutiny. However, one is faced with the following obstacle: The
semantics of LTL is defined over infinite (behavioural) traces whereas monitoring
a running system allows an at most finite view.

While the syntax and semantics of LTL on infinite traces is well accepted in
the literature, there is no consensus on defining LTL over finite strings. Several
versions of a two-valued semantics for LTL on finite strings have been proposed
[GH01a, HR01b, HR02, HR01a, SB05, dR05], see Eisner et al. for a comprehen-
sive survey on this topic [EFH+03]. Alternatively, it has also been proposed to
restrict the syntax of LTL for runtime verification, such that formulae which
may contain certain future obligations cannot be specified at all [GH01b].

In monitoring a property, there can at least arise three different situations:
Firstly, the property can be already satisfied for sure after a finite number of steps;
secondly, the property can be shown to evaluate to false for every possible contin-
uation, or thirdly, the finite, already observed prefix allows different continuations
leading to either satisfaction or falsification. Thus, every two-valued logic must
evaluate to true or false prematurely since it cannot reflect the third case properly.

O. Sokolsky and S. Tasiran (Eds.): RV 2007, LNCS 4839, pp. 126–138, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

The Good, the Bad, and the Ugly, But How Ugly Is Ugly? 127

To overcome these obstacles, we propose in [ABLS05, BLS06], a three-valued
semantics which extends the classical semantics over finite traces. There, a prop-
erty evaluates to true (false), wrt. a finite observation, iff the observation is either
a satisfying (violating) prefix. In all other cases, the observation is said to be
inconclusive, and the property assigned a ?.

This scheme coincides well with the notion of safety (e. g., Gp—always p)
and co-safety (e. g., Fp—eventually p) properties, since these are either finitely
refutable or satisfiable. However, when monitoring a true liveness property, that
is one that is not safety nor a co-safety property, then neither the violation
nor the satisfaction of the property can be determined using a finite stream of
observations, and not much is said about the possible future. Actually, in [PZ06]
it is suggested to call these properties non-monitorable.

A typical example for a liveness property is G(request → F grant) saying that
every request should eventually be granted. In practice, however, one is often
faced with such properties and therefore it is impractical to preclude correspond-
ing monitoring procedures.

In this work, we follow the idea that an inconclusive result of a monitor should
be more detailed. To this end, we propose a four-valued semantics for LTL that
not only results in either true, false, or ?, but yields possibly true and possibly false
whenever the system’s behaviour so far is inconclusive in the three-valued sense.
We call the resulting logic Runtime Verification Linear Temporal Logic (RV-LTL).

Further, we have defined a translation from a formula in RV-LTL to a monitor
(Moore machine) of minimal size, which then forms a suitable foundation for
runtime verification, in that the output alphabet of the automaton corresponds
to the four truth values sketched above.

Our logic RV-LTL seems to correspond with the semantics realised by the
Temporal Rover [Dru00] and has, to the best of our knowledge, not been formally
captured elsewhere.

In [dR05], a monitor construction and simplification is given. By combining
two of their monitors, as briefly described in their implementation section, this
approach can be used to implement the three-valued semantics as presented
independently in [ABLS05, BLS06].

Outline. We briefly recall the standard infinite trace semantics of LTL in the
next section. In Section 3, we first elaborate four maxims which we require to
be satisfied by a temporal logic suitable for runtime verification. Then, we recall
two preexisting logics for finite traces and show why they do not satisfy our
maxims. However, we show how to combine the two logics towards RV-LTL and
argue that RV-LTL adheres to our maxims. Finally, in Section 4, we describe a
construction of a monitor procedure for RV-LTL.

2 LTL on Infinite Traces

For the remainder of this paper, let AP be a finite set of atomic propositions
and Σ = 2AP a finite alphabet . We write ai for any single element of Σ, i.e., ai

is a possibly empty set of propositions taken from AP.

128 A. Bauer, M. Leucker, and C. Schallhart

Finite traces over Σ are elements of Σ∗, usually denoted by u, u′, u1, u2, . . . ,
whereas infinite traces are elements of Σω, usually denoted by w, w′, w1, w2,
For some trace w = a0a1 . . . , we denote by wi the suffix aiai+1

The set of LTL formulae is inductively defined by the following grammar:

ϕ ::= true | p | ¬ϕ | ϕ ∨ ϕ | ϕ U ϕ | Xϕ (p ∈ AP) (1)

Let i ∈ N be a position. The semantics of LTL formulae is defined inductively
over infinite sequences w = a0a1 . . . ∈ Σω as follows:

w, i |= true
w, i |= ¬ϕ iff w, i �|= ϕ
w, i |= p iff p ∈ ai

w, i |= ϕ1 ∨ ϕ2 iff w, i |= ϕ1 or w, i |= ϕ2
w, i |= ϕ1Uϕ2 iff there is a k ≥ i : w, k |= ϕ2 and

for all l with i ≤ l < k : w, l |= ϕ1
w, i |= Xϕ iff w, i + 1 |= ϕ

Further, let w |= ϕ be an abbreviation for w, 0 |= ϕ. We call w a model of ϕ
iff w |= ϕ. For every LTL formula ϕ, its set of models, denoted by L(ϕ), is
a regular set of infinite traces and can be described by a corresponding Büchi
automaton [VW86, Var96]. For ϕ, ψ ∈ LTL, we say that ϕ is equivalent to ψ,
denoted by ϕ ≡ ψ, iff for all w ∈ Σω, we have

w |= ϕ iff w |= ψ

For reasons to become clear in Section 3, note that, in LTL

¬Xϕ ≡ X¬ϕ (2)

holds, which matches the intuition that something does not hold in the next
position if, in the next position, it does not hold.

3 LTL on Finite Traces

While the syntax and semantics of LTL on infinite traces is well-accepted in
the literature, there is no consensus on defining LTL on finite strings. Several
versions of a two-valued semantics for LTL on finite strings have been proposed.
However, as we argue below, for runtime verification, a four-valued semantics is
preferable.

As discussed in [MP95], the difficulty for an LTL semantics on finite strings
lies in the next-state operator X . Given a finite string u = a0, . . . , an−1 of length
n, the question is which semantics to choose for Xϕ in the last position of u:

u, n − 1
?
|= Xϕ (3)

The Good, the Bad, and the Ugly, But How Ugly Is Ugly? 129

We follow the approach of [MP95] in understanding the next-state operator as
an operator firstly assuring that there exists a next state which secondly satisfies
ϕ. We use this assumption as the first of our four maxims, which we consider
essential for a semantics for LTL on finite traces, in particular in the context of
runtime verification:

– Xϕ means there exists a next state and this state satisfies ϕ. (∃X)

Consequently, equation 3 yields false, as there is no next state. Our second maxim
states that a negated formula indeed yields the complemented truth value of the
original formula, i. e.,

– a formula and its negation yield complementary truth values. (¬=C)

Then, however, a negated next-state formula should be true. This, however,
conflicts equation 2 (¬Xϕ ≡ X¬ϕ), which therefore can no longer hold on finite
traces (unless true equals false). It is therefore helpful to distinguish a strong
(denoted by X) and a weak version (denoted by X̄) of the next-state operator.

We call the strong next-state operator X also existential next-state operator,
as it requires a next-state to exist, and the weak next-state operator X̄ also
universal next-state operator.

The introduction of a strong and a weak version of a next-state operator ad-
ditionally allows to cope with the intuitive meaning of LTL’s finally and globally
operators:

Intuitively, the finally operator F is of existential nature [HR02], as some
property should eventually be shown, while the globally operator G is of universal
character as something should hold in every position of a word. Accordingly, Fϕ
should evaluate to false if ϕ does not hold in the current state and nothing is
known about the future, while Gϕ should become true, if ϕ holds in the current
state and nothing is known about the successor states.

In LTL, we have that Fϕ ≡ ϕ∨XFϕ, as well as, Gϕ ≡ ϕ∧XGϕ. Consequently,
XFϕ should be false, if no subsequent state exists, while XGϕ should be true in
the same situation. This contradiction can be resolved with the addition of the
universal next-state operator X̄ . Using this notation, we can rewrite the above
LTL equivalences as Fϕ ≡ ϕ ∨ XFϕ and as Gϕ ≡ ϕ ∧ X̄Gϕ.

The so far developed view is meaningful in a setting which is only concerned
with completed or terminated paths. In runtime verification, however, we are
given a finite prefix of a continuously expanding trace. Therefore, it is clear that
there will be a next state—this continuation is just not known yet. To reflect
this situation, we postulate two further maxims for logic suitable for runtime
verification. The first one says that

– the semantics never evaluates to true or false prematurely. (Sound)

The string a (of length 1) clearly satisfies the proposition p iff p ∈ a. While,
understanding a as a prefix of an infinite string, the value of Xϕ is of less

130 A. Bauer, M. Leucker, and C. Schallhart

certainty, as the successor state of a is not known. Choosing either true or false
(depending on whether to understand X strongly or weakly) would diminish
the qualitative difference of the knowledge on p and Xϕ based on the string a.
Therefore, we require a semantics to yield four values: true, possibly true, possibly
false, and false.

When considering Xϕ in the last state of a finite string u, there is no rea-
son to evaluate Xϕ to false, possibly false, or possibly true, if every possible
continuation of u satisfies ϕ. A trivial example would be Xtrue. While every
single letter extension of u would make Xtrue true in u’s last position, the se-
mantics discussed so far evaluate Xtrue to false or possibly false. We therefore
postulate

– the semantics is as anticipatory as possible. (Precise)

In the remainder of the section, we recall two preexisting logics for finite traces,
namely FLTL and LTL3, and show that they do not satisfy all our postulated
maxims (∃X), (¬=C), (Sound), and (Precise). Then, we combine the two
logics towards RV-LTL and argue that RV-LTL adheres to our maxims.

3.1 Existing Semantics for Finite Traces

We start by recalling two existing definitions of LTL for finite traces, namely
FLTL [LPZ85] and LTL3 [BLS06]. Both variants provide complementary prop-
erties for runtime verification but neither of them satisfies all four maxims as
postulated above.

The set of FLTL formulae is inductively defined by the following grammar:

ϕ ::= true | p | ¬ϕ | ϕ ∨ ϕ | ϕ U ϕ | Xϕ | X̄ϕ (p ∈ AP) (4)

In this definition, we use two versions of the next-state operator to overcome
the difficulty of deciding whether a formula Xϕ holds in the last position of a
finite string—thus FLTL satisfies (∃X): The strong (and standard) X operator
is used to express with Xϕ that a next state must exist and that this next state
has to satisfy property ϕ. In contrast, the weak X̄ operator in X̄ϕ says that if
there is a next state, then this next state has to satisfy the property ϕ.

The semantics function [u, i |= ϕ]F of FLTL is constructed like the one for
standard LTL with one modification: If a strong next-state operator in some
subformula Xϕ is referring to a state beyond the known finite prefix u, then
this subformula Xϕ is evaluated to ⊥, regardless of ϕ. Likewise, a subfor-
mula X̄ϕ, based on the weak next-state operator, always evaluates to � if
it refers to a state beyond u. This concept is explicated in the following
definition:

Definition 1 (Semantics of FLTL [LPZ85]). Let u = a0 . . . an−1 ∈ Σ∗ de-
note a finite trace of length n. The truth value of an FLTL formula ϕ wrt. u

The Good, the Bad, and the Ugly, But How Ugly Is Ugly? 131

at position i < n, denoted by [u, i |= ϕ]F , is an element of B and is defined as
follows:

[u, i |= true]F = �

[u, i |= p]F =

{

� if p ∈ ai

⊥ if p /∈ ai

[u, i |= ¬ϕ]F = [u, i |= ϕ]F
[u, i |= ϕ ∨ ψ]F = [u, i |= ϕ]F � [u, i |= ψ]F

[u, i |= Xϕ]F =

{

[u, i + 1 |= ϕ]F if i + 1 < n

⊥ otherwise

[u, i |= X̄ϕ]F =

{

[u, i + 1 |= ϕ]F if i + 1 < n

� otherwise
[u, i |= ϕ U ψ]F = [u, i |= ψ]F � ([u, i |= ϕ]F [u, i |= X U ψ]F

Therefore, FLTL can satisfy the maxim (∃X) as well as (¬=C) since negated
formulae always yield complementary truth values. However, FLTL does not
satisfy the maxim (Precise) because the truth value of [u, n − 1 |= Xϕ]F for
|u| = n does not depend on ϕ at all. For example, [u, n − 1 |= X true]F = ⊥
although X true will evaluate to � in every possible continuation. Furthermore,
FLTL cannot satisfy maxim (Sound) since FLTL only uses a two-valued se-
mantic domain and thus every prefix must be evaluated (possibly prematurely)
to either � or ⊥.

In[BLS06, ABLS05], we proposed LTL3 as an LTL logic with a semantics
for finite traces, which caters the view that a finite trace is a prefix of an so-
far unknown infinite trace. More specifically, LTL3 uses the standard syntax of
LTL as defined in Equation (1) but employs a semantics function [u, i |= ϕ]3
which evaluates for a formula ϕ each finite trace u of length n and each position
0 ≤ i < n to a value out of B3 = {�, ⊥, ?}. If every infinite trace with prefix
u evaluates to same truth value � or ⊥, then [u, i |= ϕ]3 also evaluates to this
truth value. Otherwise [u, i |= ϕ]3 evaluates to ?, i. e., we have [u, i |= ϕ]3 =? if
different continuations of u yield different truth values. This discussion leads to
the following definition:

Definition 2 (Semantics of LTL3). Let u = a0 . . . an−1 ∈ Σ∗ denote a finite
trace of length n. The truth value of a LTL3 formula ϕ wrt. u at position i < n,
denoted by [u, i |= ϕ]3, is an element of B3 and defined as follows:

[u, i |= ϕ]3 =

⎧

⎪
⎨

⎪
⎩

� if ∀σ ∈ Σω : uσ, i |= ϕ

⊥ if ∀σ ∈ Σω : uσ, i �|= ϕ

? otherwise.

Note that LTL3 satisfies three of our four maxims: A formula and its negation
yield the complementary truth values (¬=C), the semantics never evaluates
to true or false prematurely (Sound), and the semantics are as anticipatory
as possible (Precise). Since LTL3 uses the standard LTL syntax, it does not

132 A. Bauer, M. Leucker, and C. Schallhart

distinguish between a strong and weak next-state operator and consequently,
the maxim (∃X) cannot be satisfied.

Note that ideas leading to the definition of LTL3 have been formulated inde-
pendently in [dR05]. The notion of a (minimal) bad prefix u is introduced and
defined as a prefix that does not have any continuation satisfying a formula ϕ.
Thus, [u |= ϕ]3 would evaluate to ⊥ for every bad prefix u for ϕ. By adding a dual
monitor for ¬ϕ, as proposed in the implementation section of [dR05], the notion
of a good prefix is obtained and the semantics of LTL3 can be implemented.

3.2 RV-LTL

We now define RV-LTL which is a version of LTL on finite strings tailored for
runtime verification. RV-LTL is designed to incorporate and resolve the require-
ments as stated afore. The set of RV-LTL formulae is inductively defined by the
following grammar:

ϕ ::= true | p | ¬ϕ | ϕ ∨ ϕ | ϕ U ϕ | Xϕ | X̄ϕ (p ∈ AP) (5)

As in FLTL, we use two versions of the next-state operator to overcome the
difficulty of deciding whether a formula Xϕ holds in the last position of a finite
string—thus RV-LTL satisfies (∃X). Like in FLTL, the strong (and standard) X
operator is used to express with Xϕ that a next state must exist and that his next
state has to satisfy some property ϕ. Dually, the weak X̄ operator in X̄ϕ says that
if there is a next state, then this next state must satisfy the property ϕ.

To accommodate maxim (Sound) and in contrast to FLTL, we use a four
valued semantics for RV-LTL with B4 = {⊥, ⊥p, �p, �} as the set of truth
values. B4 can be extended to a complete lattice by ordering ⊥ ≤ ⊥p ≤ �p ≤ �.
 and � are then defined as expected. To match maxim (¬=C), ⊥ and �
are defined to be complementary to each other as well as ⊥p and �p, where
complementation is denoted by .̄ Note that B4 is not a Boolean lattice, as, for
example, ⊥p � ⊥p = ⊥p � �p �= �. However, the distributive laws hold:

x (y � z) = (x y) � (x z)

x � (y z) = (x � y) (x � z)

Definition 3 (Semantics of RV-LTL). Let u = a0 . . . an−1 ∈ Σ∗ denote a
finite trace of length n = |u|. The truth value of an RV-LTL formula ϕ wrt. u
at position i < n, denoted by [u, i |= ϕ]RV , is an element of B4 and is defined as
follows:

[u, i |= ϕ]RV =

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

� if [u, i |= ϕ′]3 = �
⊥ if [u, i |= ϕ′]3 = ⊥
�p if [u, i |= ϕ′]3 =? and [u, i |= ϕ]F = �
⊥p if [u, i |= ϕ′]3 =? and [u, i |= ϕ]F = ⊥

where ϕ′ is obtained from ϕ by replacing each weak next-state operator X̄ with
a strong next-state operator X .

The Good, the Bad, and the Ugly, But How Ugly Is Ugly? 133

Note that, in the last position of a word u, both Xϕ and X̄ϕ evaluate to � (⊥)
if the outcome is predetermined for all possible continuations. Therefore, the
semantics of RV-LTL also satisfy maxim (Precise).

Note that the semantics of RV-LTL as given in Definition 3 directly provides
an efficient way to construct a monitor procedure for RV-LTL: By running a
monitor for LTL3 and for FLTL simultaneously and by combining their respec-
tive results following Definition 3, we obtain a monitor procedure for RV-LTL.
We will exploit this fact in the next section where we discuss the monitor con-
struction for RV-LTL in detail.

For two formulae ϕ and ψ, we say that ϕ is equivalent to ψ w.r.t. RV-LTL,
denoted by ϕ ≡RV ψ, iff for all u ∈ Σ∗ and 0 ≤ i < |u|, we have [u, i |= ϕ]RV =
[u, i |= ψ]RV .

To demonstrate the semantics of RV-LTL, we discuss in the following a num-
ber of examples. In the motivating discussion of this section, we referred to the
equivalence

¬Xϕ ≡ X¬ϕ

which is true w.r.t. LTL. On the other hand, in RV-LTL, this equivalence does
not hold, as ¬Xϕ is �p in the last position of a word u (if ϕ cannot be evaluated
for possible continuations), while X¬ϕ is ⊥p. However, we have

¬Xϕ ≡RV X̄¬ϕ.

Using the equivalence

ϕ U ψ ≡RV ψ ∨ (ϕ ∧ X (ϕ U ψ))

which holds for RV-LTL as well as for standard LTL, we can define the finally
operator F and globally operator G as abbreviations Fϕ := true U ϕ and
Gϕ := ¬F¬ϕ and evaluate them as follows:

Fϕ ≡RV true U ϕ
≡RV ϕ ∨ (true ∧ X (true U ϕ))
≡RV ϕ ∨ XFϕ

and
Gϕ ≡RV ¬F¬ϕ

≡RV ¬(true U ¬ϕ)
≡RV ¬(¬ϕ ∨ (true ∧ X (true U ¬ϕ))
≡RV ¬¬ϕ ∧ ¬(true ∧ X (true U ¬ϕ))
≡RV ϕ ∧ ¬(X (true U ¬ϕ))
≡RV ϕ ∧ X̄¬(true U ¬ϕ))
≡RV ϕ ∧ X̄Gϕ

yield the two equivalences Fϕ ≡RV ϕ ∨ XFϕ and Gϕ ≡RV ϕ ∧ X̄Gϕ which we
discussed to motivate our four maxims. Note that in the previous calculation we
used the distributive law and the equivalence ¬Xϕ ≡RV X̄¬ϕ.

Fϕ ≡RV ϕ ∨ XFϕ reflects that ϕ must be satisfied in the future: If ϕ is not
satisfied immediately, then there must be a satisfying future state. If no such

134 A. Bauer, M. Leucker, and C. Schallhart

future state exists, the formula evaluates to ⊥p. Similarly, Gϕ ≡ ϕ∧X̄ Gϕ shows
that ϕ must be satisfied in the current state and in all observable future states.
If we do not know the future, the formula evaluates to �p.

As a final example, we evaluate the property that some request must be
answered by a corresponding answer:

G(p → Fq) ≡RV (p → Fq) ∧ X̄ (G(p → Fq))
≡RV (¬p ∨ q ∨ XFq) ∧ X̄ (G(p → Fq))

This formula evaluates to ⊥p under RV-LTL if the trace contains a p but ends
before q occurs and evaluates to �p in all other cases. This behaviour is intuitive,
since the first case corresponds to a request which has not been answered yet,
while the second case means that all requests so far have been answered properly.

Let us close this section by recalling that RV-LTL’s semantics can be un-
derstood as refinement of LTL3’s semantics. Consequently, we can obtain the
semantics of LTL3 by mapping a �p/⊥p value to ?:

Remark 1. Let u = a0 . . . an−1 ∈ Σ∗ denote a finite trace of length n and let ϕ
be an LTL3 formula. Then the following holds

[u, i |= ϕ]3 =

⎧

⎪
⎨

⎪
⎩

� if [u, i |= ϕ]RV = �
⊥ if [u, i |= ϕ]RV = ⊥
? if [u, i |= ϕ]RV ∈ {�p, ⊥p}

where the X of LTL3 is interpreted as strong next-state operator in RV-LTL.

4 Monitors for RV-LTL

A monitor is a device that consumes the input letter by letter and outputs the
semantics of the string read so far with respect to the formula the monitor was
built for.

In our setting, we use a Moore machine, also called finite-state machine
(FSM), which is a finite state automaton enriched with output. Formally, an
FSM is a tuple A = (Σ, Q, Q0, δ, Δ, λ), where

– Σ is a finite alphabet ,
– Q is a finite non-empty set of states ,
– q0 ∈ Q is the initial state,
– δ : Q × Σ → Q is the transition function,
– Δ is the output alphabet , and
– λ : Q → Δ is the output function.

The output of a Moore machine, defined by the function λ, is thus determined
by the current state q ∈ Q alone, rather than by input symbols.

We extend the transition function δ : Q×Σ → Q, as usual, to δ′ : Q×Σ∗ → Q
by δ′(q, ε) = q where q ∈ Q and δ′(q, ua) = δ(δ′(q, u), a). To simplify notation,
we use δ for both δ and δ′. Similarly, we extend the output function λ : Q → Δ

The Good, the Bad, and the Ugly, But How Ugly Is Ugly? 135

to λ′ : Q × Σ∗ → Δ by λ′(q, u) = λ(δ(q, u)), for q ∈ Q and u ∈ Σ∗. Thus,
function λ′ yields for a given word u the output in the state reached by u rather
than the sequence of outputs. To simplify notation, we use λ for both λ and λ′.
We also say that A computes the function λ : Σ∗ → Δ.

Following the characterisation of RV-LTL in terms of LTL3 and FLTL devel-
oped in the previous section, we base the monitor construction for RV-LTL on
the monitor constructions for the respective logics.

Monitors for LTL3. In [BLS06], a monitor construction for a given formula ϕ
with respect to the three-valued semantics was elaborated:

Theorem 1 ([BLS06]). Let ϕ be an LTL3 formula. Then there is an effective
procedure constructing an FSM Aϕ

3 = (Σ, Q, q0, δ, B3, λ) such that for all u ∈ Σ∗

the following holds:

[u |= ϕ]3 = λ(δ(q0, u)).

Moreover, the size of Aϕ
3 is at most double exponential in the size of ϕ.

Monitors for FLTL. Following [MP95], it is easy to come up with a non-
deterministic automaton accepting precisely the words satisfying a given LTL
formula ϕ with respect to the FLTL semantics. Such an automaton can be made
deterministic as usual. Moreover, a deterministic automaton can be understood
as an FSM by outputting � in each accepting state and ⊥ in the remaining
states. This gives:

Theorem 2 ([MP95]). Let ϕ be an FLTL formula. Then there is an effective
procedure constructing an FSM Aϕ

F = (Σ, Q, q0, δ, B, λ) such that for all u ∈ Σ∗

the following holds:

[u |= ϕ]F = λ(δ(q0, u)).

Moreover, the size of Aϕ
F is at most double exponential in the size of ϕ.

Monitors for RV-LTL. We are now ready to define a monitor computing the
RV-LTL semantics.

Definition 4 (Monitor Āϕ
RV for a RV-LTL-formula ϕ). Let ϕ be an RV-

LTL formula. Let Aϕ
3 = (Σ, Q, q0, δ, B3, λ) be the monitor that computes the

3-valued semantics for ϕ (cf. Theorem 1) where weak next has been replaced
with the standard next-state operator.

Moreover, let Aϕ
F = (Σ, Q′, q′0, δ

′, B, λ′) be the monitor that computes the (two-
valued) FLTL semantics of ϕ (cf. Theorem 2). Then we define the monitor Āϕ

RV

as the FSM (Σ, Q̄, q̄0, δ̄, B4, λ̄), where

– Q̄ = Q × Q′,
– q̄0 = (q0, q

′
0),

136 A. Bauer, M. Leucker, and C. Schallhart

– δ̄((q, q′), a) = (δ(q, a), δ′(q′, a)), and
– λ̄ : Q̄ → B4 is defined by

λ̄((q, q′)) =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

� if λ(q) = �
⊥ if λ(q) = ⊥
�p if λ(q) =? and λ′(q′) = �
⊥p if λ(q) =? and λ′(q′) = ⊥

Thus, we simultaneously compute the three-valued as well as the FLTL seman-
tics by taking the Cartesian product of the corresponding monitors. However,
we keep � and ⊥ from the three-valued semantics and go for possibly true (�p)
or possibly false (⊥p) whenever the three-valued semantics gives don’t know (?)
and FLTL semantics yields � or ⊥, respectively. This gives:

Theorem 3. Let ϕ be an RV-LTL formula and let Āϕ
RV = (Σ, Q̄, q̄0, δ̄, B4, λ̄) be

the monitor according to Definition 4. Then for all u ∈ Σ∗ the following holds:

[u |= ϕ]RV = λ̄(δ̄(q̄0, u)).

Moreover, the size of Āϕ
RV is at most double exponential in the size of ϕ.

While the size of the final FSM is in O(22n

) which sounds a lot, standard min-
imisation algorithms for FSMs can be used to derive an optimal deterministic
monitor wrt. the number of states. Optimality implies that any other method,
in the worst case, has the same complexity. Better complexity results in other
approaches are either due to using a restricted fragment of LTL or otherwise
imply that the chosen temporal operators might not limit the expressive power
of LTL but sometimes impose long formulas for encoding the desired behaviour.

In practice, however, one might trade a precomputed deterministic monitor to-
wards an on-the-fly determinisation on a non-deterministic monitor as described
in [BLS06].

5 Conclusion

In this paper we introduced RV-LTL which is a new variant of LTL defined
over finite traces. We developed RV-LTL in order to match four maxims which
are motivated by runtime verification applications: A suitable semantics for run-
time verification should evaluate each formula and its negation to complementary
truth values (¬=C), the semantics should never evaluate to true or false prema-
turely (Sound), the semantics should be as anticipatory as possible (Precise),
and finally, the logic should provide a strong and weak next-state operator (∃X).
While preexisting logics can satisfy these maxims partially, none of them does
satisfy all four properties simultaneously.

This gap is closed by RV-LTL which matches all four maxims. To turn RV-
LTL in a practically applicable device for runtime verification, we first showed
how to define the semantics of RV-LTL in terms of two other variants of LTL,
namely LTL3 and FLTL, and second we translated this relationship into an
efficient monitor construction.

The Good, the Bad, and the Ugly, But How Ugly Is Ugly? 137

Acknowledgement. We thank the anonymous reviewers for their valuable and
detailed comments.

References

[ABLS05] Arafat, O., Bauer, A., Leucker, M., Schallhart, C.: Runtime verification
revisited. Technical Report TUM-I0518, Technische Universität München
(2005)

[BLS06] Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time proper-
ties. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337,
Springer, Heidelberg (2006)

[dR05] d’Amorim, M., Rosu, G.: Efficient monitoring of omega-languages. In: Etes-
sami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 364–378.
Springer, Heidelberg (2005)

[Dru00] Drusinsky, D.: The temporal rover and the atg rover. In: Havelund, K.,
Penix, J., Visser, W. (eds.) SPIN. LNCS, vol. 1885, pp. 323–330. Springer,
Heidelberg (2000)

[EFH+03] Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Campenhout,
D.: Reasoning with temporal logic on truncated paths. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 27–39. Springer, Hei-
delberg (2003)

[GH01a] Giannakopoulou, D., Havelund, K.: Automata-based verification of tempo-
ral properties on running programs. In: ASE, pp. 412–416. IEEE Computer
Society, Los Alamitos (2001)

[GH01b] Giannakopoulou, D., Havelund, K.: Runtime analysis of linear temporal
logic specifications. Technical Report 01.21, RIACS/USRA (2001)

[HR01a] Havelund, K., Rosu, G.: Monitoring Java Programs with Java PathEx-
plorer. Electr. Notes Theor. Comp. Sci. 55(2) (2001)

[HR01b] Havelund, K., Rosu, G.: Monitoring programs using rewriting. In: ASE
2001. Proceedings of the 16th IEEE International Conference on Auto-
mated Software Engineering, Washington, DC, USA, p. 135. IEEE Com-
puter Society, Los Alamitos (2001)

[HR02] Havelund, K., Rosu, G.: Synthesizing Monitors for Safety Properties. Tools
and Algorithms for Construction and Analysis of Systems, 342–356 (2002)

[LPZ85] Lichtenstein, O., Pnueli, A., Zuck, L.: The Glory of the Past. In: Proceed-
ings of the Conference on Logic of Programs, pp. 196–218 (1985)

[MP95] Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety.
Springer, Heidelberg (1995)

[Pnu77] Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th
IEEE Symposium on the Foundations of Computer Science (FOCS-77),
pp. 46–57. IEEE, Los Alamitos (1977)

[PZ06] Pnueli, A., Zaks, A.: Psl model checking and run-time verification via
testers. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS,
vol. 4085, pp. 573–586. Springer, Heidelberg (2006)

[SB05] Stolz, V., Bodden, E.: Temporal Assertions using AspectJ. In: Fifth Work-
shop on Runtime Verification (RV 2005). To be published in ENTCS, El-
sevier, Amsterdam (2005)

138 A. Bauer, M. Leucker, and C. Schallhart

[Var96] Vardi, M.Y.: An Automata-Theoretic Approach to Linear Temporal Logic.
In: Moller, F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043,
pp. 238–266. Springer, Heidelberg (1996)

[VW86] Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic
program verification. In: Symposium on Logic in Computer Science LICS
1986, pp. 332–345. IEEE Computer Society Press, Washington (1986)

Translation Validation of System Abstractions�

Jan Olaf Blech, Ina Schaefer, and Arnd Poetzsch-Heffter

Software Technology Group
University of Kaiserslautern

Germany

Abstract. Abstraction is intensively used in the verification of large,
complex or infinite-state systems. With abstractions getting more com-
plex it is often difficult to see whether they are valid. However, for using
abstraction in model checking it has to be ensured that properties are pre-
served. In this paper, we use a translation validation approach to verify
property preservation of system abstractions. We formulate a correctness
criterion based on simulation between concrete and abstract system for
a property to be verified. For each distinct run of the abstraction proce-
dure the correctness is verified in the theorem prover Isabelle/HOL. This
technique is applied in the verification of adaptive embedded systems.

1 Introduction

Recently, a large amount of research has addressed the verification of large,
complex or infinite-state systems using model checking. Due to inherent limita-
tions model checkers are unable to deal with such systems directly. So research
concentrated on finding abstractions reducing the state space sufficiently while
preserving necessary precision. However, since abstraction procedures are getting
more complex it is not always clear if they are valid, i.e. that properties veri-
fied for the abstract system also hold in the concrete system. In principle, there
are two approaches to guarantee correctness of abstractions: Abstraction algo-
rithms (and their implementations!) are verified once and for all. Alternatively,
abstraction results of each distinct run of the abstraction procedure are proved
correct. In this work, we will propose a technique for guaranteeing abstraction
correctness using the second approach.

The overall structure of our approach is depicted in Figure 1. For verify-
ing a system abstraction, the abstraction procedure is given a concrete system
comprising a property to be checked. As output an abstract system with a corre-
sponding abstract property is produced. Furthermore, a proof script is generated
doing the actual proof that the abstraction preserves the considered property. A
correctness criterion based on simulation between abstract and concrete system
is formalized. Using the proof script, this criterion is checked for the consid-
ered concrete and abstract systems and properties in the theorem prover Is-
abelle/HOL [14]. Thus the correctness of an abstraction is verified for each run
� Supported by the Rheinland-Pfalz Cluster of Excellence ‘Dependable Adaptive Sys-

tems and Mathematical Modelling’ (DASMOD).

O. Sokolsky and S. Tasiran (Eds.): RV 2007, LNCS 4839, pp. 139–150, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

140 J.O. Blech, I. Schaefer, and A. Poetzsch-Heffter

Fig. 1. Our Translation Validation Infrastructure

of the abstraction procedure. Note that the correctness of the technique does
not depend on the proof script provided. An incorrect proof script may never
lead to an incorrect proof but rather to no proof at all.

Our work towards runtime verification of system abstractions is inspired by a
translation validation [15] based approach for compilers [4, 12, 18]. In the area
of compiler verification, it has turned out that runtime verification of compilers
is often the method of choice for achieving guaranteed correct compilation re-
sults. As for compilers, correctness proofs for distinct abstractions are usually
less complex and easier to establish than proofs for a general abstraction proce-
dure. An additional advantage is that the abstraction procedure can be tailored
to a particular system and property under consideration and thus match the
requirements of the concrete problem very closely while still being proved cor-
rect. Also note, that in our approach the correctness of abstractions is proved
formally using a theorem prover instead of a paper-and-pencil-proof.

The proposed technique is applied in verification of adaptive embedded sys-
tems [1]. Beside potentially unbounded data domains the size of the considered
systems is huge. For efficient verification by model checking, these systems have
to be abstracted in a property-preserving way. We have successfully applied run-
time verification of the necessary abstractions in this domain.

This paper is structured as follows: Section 2 describes the application do-
main of our work. In Section 3, we present a theorem on property preservation.
This is used in the implementation and proving strategies in Section 4. A short
evaluation is given in Section 5. We discuss related work in Section 6 before
concluding in Section 7.

2 Adaptive System Verification

In the EVAS project [1], the application domain is the verification of adap-
tive embedded systems. The considered adaptive systems consist of a set of
synchronously operating modules. Each module is equipped with a set of dif-
ferent predetermined behavioral variants it can adapt to depending on the sta-
tus of the environment. This enhances system reliability and dependability but
also increases design complexity making support for formal verification highly
necessary. The systems are developed in a modeling environment also used for
other purposes such as code generation. Hence, they contain a level of detail not
amenable for automatic verification making system abstractions indispensable.

Translation Validation of System Abstractions 141

Module = (var, init, configurations, adaptation) with var⊆ Var and init : var → Val
configurations = {(guardj, next statej, next outj)} for i = 1, . . . , n
guardj: a Boolean constraint on adapt var
next statej, next outj : (var → Val) → (var → Val)
adaptation = (adapt var, adapt init, adapt next state, adapt next out)
adapt var ⊆ Var and adapt init : adapt var → Val
adapt next state, adapt next out : (adapt var → Val) → (adapt var → Val)

System = ({Module1, . . . , Modulen}, var, adapt var, conna, connd)

Fig. 2. SAS Module and System Description

Figure 2 shows a part of our representation for synchronous adaptive systems
(SAS). A full formal account can be found in [1]. A SAS module consists of a
set of variables var (divided into state and output variables) together with their
initial values, a set of configurations modeling the functional behavior and an
adaptation aspect representing the adaptive behavior. Each configuration con-
sists of a guard determining when this configuration is enabled and the attached
state transition functions for the state and output variables. The adaptation as-
pect comprises a distinct set of adaptation specific variables, their initial values
and state transition functions for the adaptive state and output variables. This
explicit account of adaptive and functional behaviour allows to reason about
functional and adaptive aspects in isolation as well as in combination. The se-
mantics of SAS modules is similar to ordinary transition systems with the dif-
ference that a transition between two module states evolves in two stages: First,
the adaptation aspect computes the new valuation of adaptive state and output
variables. Then, the configuration with valid guard is selected and the respective
state and output transition functions are executed. A SAS system is composed
from a set of modules by connecting their functional and adaptive variables
and the system’s functional and adaptive variables by functional and adaptive
connection functions, conna and connd resp.

As an example of how abstraction facilitates verification of synchronous adap-
tive systems, consider a system that consists of one module with two different
configurations. Every time the input is bigger than a certain threshold, say 50,
the module switches to its first configuration. This configuration uses a specific
algorithm for computing the output. If the input is smaller than 50, the mod-
ule uses configuration 2 computing the output in a different way. An important
property of this example system is that every time the input exceeds 50 config-
uration 1 is used in order to make sure that the appropriate algorithm is em-
ployed. This property can be stated in a variant of the temporal logic CTL*[11]
as ϕ ≡ AG(input ≥ 50 → useconf = 1) modeling the used configuration by a
variable useconf . For ϕ, the actual functionality of the system is irrelevant.

Because the input domain in the example system is unbounded ϕ cannot be
model checked directly. However, we can abstract the system by mapping the
infinite domain of input values to a finite abstract domain while preserving the
property under consideration. We choose the abstract domain ̂Val = {low, high}.

142 J.O. Blech, I. Schaefer, and A. Poetzsch-Heffter

Fig. 3. Illustration of the example system

The abstraction function h : Val → ̂V al is defined as h(v) = low if v < 50
and h(v) = high if v ≥ 50. Then the abstract system will use configuration
1 if the input is high and configuration 2 if it is low. Figure 3 depicts the
concrete and abstract system as automata. The property ϕ is abstracted to
ϕ̂ ≡ AG(input = high → useconf = 1). With the approach presented in this
paper we will be able to verify at runtime of the abstraction procedure that
the abstraction preserves ϕ. This means that if we are able to verify ϕ̂ for the
abstract system ϕ also holds for the concrete.

We apply our approach to adaptive systems in the automotive sector. An
adaptive system implementing the ABS (antilock braking system) consists of a
large number of different modules and hundreds of different variables ranging
over unbounded domains. While in the simple example, the correctness of the
abstraction can be easily seen, in real-world examples abstractions become very
complex and require support for automatically verifying their correctness.

3 Property Preservation by Simulation

In this section, we present the basis for the correctness criterion used in our
translation validation approach. It uses the fact that a property is preserved un-
der abstraction if there is a consistent simulation between abstract and concrete
system. In this presentation, we will use general transition systems as SAS se-
mantics are defined in this way. Futhermore, this allows to extend the approach
to a broader range of systems expressible as transition systems. For a more
detailed formal account and proofs, see the extended version of this paper [5].

Definition 1 (Transition System). A transition system T = (Σ, Init , �) is
defined by Σ, the set of states σ : Var → Val for a set of variables Var and
a set of values Val, Init ⊆ Σ, the set of initial states and � ⊆ Σ × Σ, the
transition relation. A path of T is defined as a sequence of states π = σ0σ1 . . .
where σ0 ∈ Init and σi � σi+1 for all i ≥ 0. The set Paths(T) denotes the set
of possible paths of T .

We use a variant of the temporal logic CTL*[11] to express properties over com-
putation paths of T . The atomic propositions are constraints on variables, e.g.

Translation Validation of System Abstractions 143

x = y or input ≤ 50. Besides Boolean negation, conjunction and disjunction we
have temporal operators, e.g. Xϕ (”next”) denoting that ϕ holds in the next state
or Gϕ (”globally”) denoting that ϕ holds on all states of a path. Additionally,
we have path quantifiers Eϕ and Aϕ. Eϕ denotes that there exists a computa-
tion path on which ϕ holds. Aϕ denotes that for all computation paths ϕ holds.
Atomic propositions are interpreted over a state σ by evalutating the variable
assignments, e.g. (T , σ) |= (x = y) iff σ(x) = σ(y). Boolean and CTL* operators
are interpreted standardly. T |= ϕ denotes that ϕ holds on paths starting in the
initial states. Atoms(ϕ) returns the set of atomic propositions used in a CTL*
formula ϕ. ACTL* denotes the fragment of CTL* where only the universal path
quantifier A is used.

In order to be able to formulate a criterion when a property is preserved
we need the notion of simulation between two transition systems. A transition
system T is simulated by an abstract transition system ̂T if we can find a
simulation relation R between the two sets of states such that firstly for all
initial states of T there exists a related initial state in ̂T and secondly that for
any pair of related states with a transition in T there is also a transition in ̂T
such that the resulting states are related.

Definition 2 (Simulation of transition systems). Let T and ̂T be two tran-
sition systems. We say that ̂T simulates T , denoted T � ̂T , iff there exists a
simulation relation R ⊆ Σ × ̂Σ such that

1. for all σ0 ∈ Init there exists σ̂0 ∈ ̂Init such that R(σ0, σ̂0)
2. for 0 ≤ i and σi, σi+1 ∈ Σ and σ̂i ∈ ̂Σ with R(σi, σ̂i) and σi � σi+1 there

exists σ̂i+1 ∈ ̂Σ such that σ̂i�̂σ̂i+1 and R(σi+1, σ̂i+1).

If a transition system T is simulated by ̂T we can show that for each path in T
there is a corresponding path in ̂T . This result is important for the preservation
of temporal operators in a CTL* formula. The proof proceeds by induction on
the length of a path.

Lemma 1 (Corresponding paths in T and ̂T). Let T and ̂T be two tran-
sition systems such that T � ̂T with simulation relation R. Then for every
path π = σ0σ1 . . . ∈ Paths(T) there exists a corresponding path π̂ = σ̂0σ̂1 . . . ∈
Paths(̂T) such that R(σi, σ̂i) for all i ≥ 0.

Now we are in the position to justify the criterion that allows to conclude T |= ϕ

from ̂T |= ϕ̂ for ϕ and ϕ̂ in ACTL*. Existential properties are typically lost un-
der abstraction. The result is based on simulation between the concrete and
the abstract system and an additional consistency condition between concrete
and abstract property. The consistency criterion intuitively expresses that the
atomic propositions must be preserved under abstraction. In order to state the
consistency condition we need a concretization function C that maps an ab-
stract property ϕ̂ to an corresponding property ϕ over the concrete system T .
It is defined on atomic propositions and compatibly lifted to ACTL* formulas.
This reflects the potentially different interpretations of variables in concrete and

144 J.O. Blech, I. Schaefer, and A. Poetzsch-Heffter

abstract system. The concrete choice of simulation relation and concretization
mapping depends on the abstraction procedure used.

Theorem 1 (Property-Preservation of ACTL*). Let T = (Σ, Init , �) and
̂T = (̂Σ, ̂Init , �̂) be two transition systems, ϕ a ACTL* formula over T and ϕ̂

an ACTL* formula over ̂T . Then it holds that

̂T |= ϕ̂ implies T |= ϕ

iff there exists a simulation relation R ⊆ Σ × ̂Σ and a concretization function
C : ACTL*[̂T] → ACTL*[T] such that the following conditions hold:

1. Initial Simulation: for all σ0 ∈ Init there exists σ̂0 ∈ ̂Init such that R(σ0, σ̂0)
2. Step Simulation: for all i ≥ 0, σi, σi+1 ∈ Σ and σ̂i ∈ ̂Σ with R(σi, σ̂i) and

σi � σi+1 there exists σ̂i+1 ∈ ̂Σ such that σ̂i�̂σ̂i+1 and R(σi+1, σ̂i+1).
3. Consistency: for all â ∈ Atoms(ϕ̂) if R(σ, σ̂) and (̂T , σ̂) |= â

then (T , σ) |= C(â)
4. Implication: T |= C(ϕ̂) → ϕ.

The proof is by induction of the structure of the formula ϕ̂. The base case
uses the consistency condition. The induction step for temporal operators and
path quantifiers uses the path lemma. This theorem constitutes the necessary
conditions for the correctness criterion in our translation validation approach. It
differs from other approaches using property-preservation by simulation [2, 7, 10]
therein that states of the underlying system model are characterized by variable
assignments and that atomic propositions in the applied logic are constraints over
these assignments. This requires a concretization function but eases to work with
systems where states are described by valuations of variables such as in SAS.

Furthermore, Theorem 1 is formulated in a very general fashion that allows to
instantiate it with a number of different kinds of abstractions. In this direction,
it can be used to justify the domain abstraction approach proposed in [6]. The
concrete transition system is defined over a concrete data domain D, either very
large or infinite. Thus, the system can only be model checked very inefficiently
if at all. So the concrete domain is mapped to an abstract domain ̂D by an
homomorphic abstraction function h : D → ̂D. In order to prove that a property
ϕ is preserved under this form of domain abstraction we have to establish a
simulation relation between Σ and ̂Σ satisfying the conditions of Theorem 1.
This is the relation defined by (σ, σ̂) ∈ R if σ̂(x) = h(σ(x)) for all x ∈ Var . The
concretization function C for an atomic proposition maps the formula x = v̂ for
x ∈ Var and v̂ ∈ ̂D to the disjunction over all concrete values that are mapped
to the abstract value v̂, i.e

C(x = v̂) =
∨

h(v)=v̂

(x = v)

The concretization function is compatibly lifted to ACTL* formulas. This form
of abstraction is also applied in the example of Section 2.

Translation Validation of System Abstractions 145

Another abstraction procedure that can be mapped to this theorem is omitting
variables that are irrelevant for the considered property, similar to dead code
elimination in compiler optimization. Here, the abstract system ̂T only contains
a subset of the variables of T , i.e. ̂Var ⊆ Var while the rest of the system remains
the same. The simulation relation between two states can be defined as R(σ, σ̂)
iff σ(x) = σ̂(x) for all x ∈ ̂Var . The concretization function is simply the identity
function since the interpretation of the atomic propositions does not change if
the abstraction is carried out correctly. Besides these two abstraction procedures
we aim at extending our work to more complicated and powerful abstractions
(see Future Work in Section 7).

4 The Translation Validation Infrastructure

In this section, we describe the different steps for verifying a system abstrac-
tion correct in Isabelle/HOL[14]. Firstly, we have to generate an Isabelle/HOL
description of both the concrete and the abstract system. Secondly, we have to
formalize a criterion stating the correctness of an abstraction in Isabelle corre-
sponding to the conditions of Theorem 1. Finally, we need a proof script that
proves that the concrete and abstract system description fulfill the correctness
criterion. Note that instead of the more general transition relation in Theorem 1
we use explicit state transition functions in the Isabelle formalization correspond-
ing to the SAS system specification (cf. Figure 2). We chose the higher order
theorem prover Isabelle/HOL for its greater degrees of freedom in specification
allowing shorter and more elegant formalizations.

4.1 Representing Systems in Isabelle

In our implementation, Isabelle representations of concrete and abstract system
are generated right before and after a run of the abstraction procedure. Con-
crete and abstract systems are represented using the same datatypes. We use
a shallow embedding of our system description language into the Isabelle/HOL
theorem prover. This means that we formalize the semantics of a system directly
within Isabelle’s Higher Order Logic constructs. Since the semantics is basically
defined via state transition functions we use Isabelle syntax to directly encode
these functions. In contrast to a shallow embedding, a deep embedding would
require to formalize the syntax of the system description language in Isabelle1

and define a semantics on top of the syntactical elements. Some of the SAS spec-
ifications are not entirely formulated as executable programs. Instead they are
only characterized via pre- and postconditions. Due to the more abstract nature
of shallow embeddings such issues are much easier to deal with in our approach.
We also believe that we can adopt to changes in the underlying datatypes faster
if we do not formalize them in Isabelle directly.

1 See e.g. [18] for a comparison between deep and shallow embedding in an Is-
abelle/HOL environment.

146 J.O. Blech, I. Schaefer, and A. Poetzsch-Heffter

Thus, to generate Isabelle system semantics representations we need to convert
a system description directly into Isabelle (state transition) functions. Further-
more, we generate datatypes representing system states to serve as arguments for
these functions. Due to the finite number of variables in each system we encode
states as tuples of values rather than in a mapping function. This simplifies con-
ducting the proofs. Variable references are encoded as selectors to such tuples.
We do not distinguish between different kinds of variables (adapt var, var cp.
Fig 2) in the state encoding. Input is implicitly regarded as a stream of input ele-
ments. One element after the other is consumed during system execution. Initial
states are encoded as functions assigning initial values to an arbitrary state.

A SAS module is divided into an adaptation aspect for adaptive behavior and
functional configurations. Before evaluating the functionality of a configuration
the adaptive part (adapt next state and adapt next out) is evaluated. The actual
functionality of a configuration (next statej and next outj) is selected using a
guard formula. In our semantics framework we encode this behavior by eval-
uating the Isabelle representation for adapt next state and adapt next out first.
Then we make a case distinction on the guard formulas (several if-clauses) se-
lecting the appropriate Isabelle representation for the configuration functions
next statej and next outj to be evaluated. The generation of the system state
transition function is done using a visitor pattern on the datatypes representing
the input systems. While visiting parts of the system description corresponding
parts for the state transition function are emitted in Isabelle/HOL syntax. These
parts are composed to a large state transition function representing a system’s
semantics within Isabelle/HOL.

In systems with more than one module, we generate Isabelle representations
for each module. Since we deal with synchronous systems, modules do not affect
each other during a single transition. Hence, we can evaluate the modules’ state
transition functions one after the other. Evaluation order does not matter. An
addition to this, we generate Isabelle representations for the connections between
modules which are functions themselves. All these functions are composed into a
single state transition function representing a system’s semantics. This technique
works for concrete and abstract systems equally well.

4.2 Formalizing Abstraction Correctness in Isabelle

For proving that an abstraction is valid we need a formalization of property
preservation in Isabelle/HOL. Such a formalized correctness criterion (Figure 4)
has to fulfill the conditions stated in Theorem 1. The first two conditions (in
both the theorem and the figure) correspond to the simulation between the two
systems. These first two conditions are formalized once for all systems. With
a slight generalization they can also be applied for the verification of compiler
optimization phases (cf. [4, 12]).

The third condition in Theorem 1 requires that the simulation relation pre-
serves consistency. We are free to chose the notion of consistency by instantiating
the concretization function C. However, we have to ensure that the fourth condi-
tion of Theorem 1 still holds. In order to establish condition 4 in Theorem 1, one

Translation Validation of System Abstractions 147

constdefs systemequivalence ::
(state => state) => (state’ => state’) => state => state’ =>
(state => state’ => bool) => concprop => absprop => concfun => bool

"systemequivalence nextstate nextstate’ s0 s0’ R c a C ==
R s0 s0’ &
ALL s s’. R s s’ --> R (next s) (next s’) &
consistency(R,C) & implies(C (a),c)"

Fig. 4. Correctness Criterion

can formulate properties to be checked in terms of the abstractions in the first
place. In our case studies, however, properties are usually formulated in terms
of the concrete system. Hence, one has to verify that the concretization of the
abstract property implies the concrete property.

Figure 5 shows a small extract from a typical simulation relation for a domain
abstraction. It takes two states A and B of concrete and abstract system and
ensures that whenever the variable in1 in the concrete system has a value less
than 50 then the value of in1 in the simulating abstract system must be low. In
the complete simulation relation for a system, we encode a condition for every
variable abstraction being performed. In contrast to this fragment of a simulation
relation designed for domain abstractions the simulation relation for omission of
variables is even simpler. Here, no condition is put on an omitted variable in the
relation.

constdefs inputequivalence :: "S1 => S2 => bool"
"inputequiv A B == (((in1 A = low) = (in1 B <= 50)) & ..."

Fig. 5. Simulation Relation

The simulation relation for a concrete system can be generated by the ab-
straction procedure or adjusted by hand. It reflects the performed abstractions.
Note that the concretization function C in Theorem 1 directly corresponds to
the simulation relation. In our example simulation relation, the abstract value
on the left side of the equation is the argument of C whereas the concrete value
on the right side refers to the result of the concretization.

4.3 Proving Abstractions Correct

To conduct the correctness proof we still need a proof script. In our current im-
plementation we first prove additional lemmata implying the actual correctness
criterion. The simu step helper lemma is a generic part for proving abstrac-
tion of variable domains and omission of variables correct. The lemma as well
as its proof is depicted in Figure 6. The formalization of the lemma is shown in
the first line. The rest is the proof script computing the proof for this lemma.
A proof script can be considered as a kind of program that tells the theorem
prover how to conduct a proof. It comprises the application of several tactics

148 J.O. Blech, I. Schaefer, and A. Poetzsch-Heffter

lemma simu_step_helper:
"(funequiv A B) & (inputequiv A B) & (funequiv’ A B) --> (funequiv (M1’ A A) (M1 B B))"

apply (clarify, unfold funequiv_def inputequiv_def, clarify)
apply (unfold M1_def, unfold M1’_def)
apply (erule subst)+
apply (unfold funequiv’_def funequiv_def inputequiv_def)
apply clarify
apply (rule conjI, simp) +
apply simp
done

Fig. 6. Proof Script

(apply) which can be regarded as subprograms in the proving process. In the
proving process the theorem prover symbolically evaluates state transition func-
tions (M1,M1’) on symbolic states. These symbolic states are specified by their
relation to each other. The theorem prover checks that the relation between the
states still holds after the evaluation of the transition functions. The predicates
funequiv and inputequiv together imply system equivalence and in general do
highly depend on the chosen simulation relation. For the case studies examined
so far, we have developed a single highly generic proof script (which the lemma
simu step helper is a part of) that proves the correctness in all scenarios con-
taining domain abstractions and omission of variables. For more complicated
scenarios the proof script might need adaptation. This was the case in the orig-
inal compiler scenario where adaptations could be done fully automatically [4].

5 Evaluation of Our Framework

The AMOR (Abstract and MOdular verifieR) tool prototypically implements the
technique proposed in this paper for domain abstractions and omitting variables.
We have successfully applied it in several case studies in the context of the
EVAS project [1] and proved that interesting system properties were preserved by
abstractions. Our largest example with domain abstractions contained amongst
others 39 variables with infinite domains. Examined system representations had
up to 2600 lines of Isabelle code. In some of these scenarios, model checking
was not possible without abstractions. Thus, our technique bridges a gap in
the verification process between a system model representation in a modeling
environment (used e.g. for code generation) and an input representation for
verification tools. The time to conduct the proofs did not turn out to be a
problem contrary to our translation validation work on compilers [4].

6 Related Work

While previously correctness of abstractions was established by showing sound-
ness for all possible systems, for instance in abstract interpretation based ap-
proaches [8, 9], our technique proves an abstraction correct for a specific system

Translation Validation of System Abstractions 149

and property to be verified. In this direction, we adopted the notion of translation
validation [15, 19] to correctness of system abstractions. Translation validation
focuses on guaranteeing correctness of compiler runs. After a compiler has trans-
lated a source into a target program a checker compares the two programs and
decides whether they are equivalent. In our setting, we replace the compiler by
the abstraction mechanism, the source program by the original system and the
target program by the abstract system. Isabelle/HOL[14] serves as checker in
our case. In the original translation validation approach[15] the checker derives
the equivalence of source and target via static analysis while the compiler is
regarded as a black box. In subsequent works, the compiler was extended to
generate hints for the checker, e.g. proof scripts or a simulation relation as in
our case, in order to simplify the derivation of equivalence of source and tar-
get programs. This approach is known as credible compilation [17] or certifying
compilation [12]. Translation validation in general is not limited to simulation
based correctness criteria. However, also for compiler and transformation algo-
rithm verification simulation based correctness criteria can be used (see e.g. [3]
for work with a similar Isabelle formalization of simulation).

Simulation for program correctness was originally introduced by [13]. Since,
property preservation by simulation has been studied for different fragments
of CTL* and the μ-calculus. The authors in [2, 7, 10] use Kripke structures
as their underlying system model where either states are labeled with atomic
propositions or atomic propositions are labeled with states. This reduces the
consistency condition to checking that the labeling of two states in simulation
is the same. However, this complicates the treatment of systems defined by
valuations of variables such as SAS. In [6], the authors use a system model
similar to ours, but this work is restricted to data domain abstraction while
our technique can be applied for different abstraction mechanisms. Abstract
interpretation based simulations as used in [2, 10] are also less general than
generic simulation relations considered here.

7 Conclusion

In this paper, we presented a technique for proving correctness of system abstrac-
tions using a translation validation approach. Based on property-preservation by
simulation we formalized a correctness criterion in Isabelle/HOL. With the help
of generic proof scripts we are able to verify abstractions correct at runtime
of the abstraction procedure. Our technique was successfully applied in various
case studies verifying data domain abstractions and omission of variables.

For future work, we want to apply our technique to further and more com-
plex abstraction procedures. In particular, we want to focus on abstractions of
hierarchical systems where simple stepwise simulation relations will no longer
be sufficient. Additionally, we are planning to investigate the interplay between
modularization and abstraction in order to further reduce verification effort.

150 J.O. Blech, I. Schaefer, and A. Poetzsch-Heffter

References

1. Adler, R., Schaefer, I., Schuele, T., Vecchie, E.: From Model-Based Design to
Formal Verification of Adaptive Embedded Systems. In: Proc. of ICFEM 2007,
(November 2007)

2. Bensalem, S., Bouajjani, A., Loiseaux, C., Sifakis, J.: Property preserving simula-
tions. In: Probst, D.K., von Bochmann, G. (eds.) CAV 1992. LNCS, vol. 663, pp.
260–273. Springer, Heidelberg (1993)

3. Blech, J.O., Gesellensetter, L., Glesner, S.: Formal Verification of Dead Code Elim-
ination in Isabelle/HOL. In: Proc. of SEFM, pp. 200–209 (2005)

4. Blech, J.O., Poetzsch-Heffter, A.: A certifying code generation phase. In: Proc. of
COCV 2007 ENTCS, Braga, Portugal, (March 2007)

5. Blech, J.O., Schaefer, I., Poetzsch-Heffter, A.: On Translation Validation for Sys-
tem Abstractions. Technical Report 361-07, TU Kaiserslautern, (July 2007)

6. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
TOPLAS 16(5), 1512–1542 (1994)

7. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

8. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proc. of
POPL, pp. 238–252. ACM Press, New York (January 1977)

9. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Proc. of POPL, pp. 269–282. ACM Press, New York (January 1979)

10. Dams, D., Gerth, R., Grumberg, O.: Abstract interpretation of reactive systems.
ACM Trans. Program. Lang. Syst. 19(2), 253–291 (1997)

11. Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science, Elsevier, Amsterdam (1990)

12. Gawkowski, M.J., Blech, J.O., Poetzsch-Heffter, A.: Certifying Compilers based
on Formal Translation Contracts. Technical Report 355-06, TU Kaiserslautern
(November 2006)

13. Milner, R.: An algebraic definition of simulation between programs. In: Proc. of
IJCAI, pp. 481–489 (1971)

14. Nipkow, T., Paulson, L.C., Wenzel, M. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002)

15. Pnueli, A., Siegel, M., Singerman, E.: Translation validation. In: Steffen, B. (ed.)
ETAPS 1998 and TACAS 1998. LNCS, vol. 1384, Springer, Heidelberg (1998)

16. Poetzsch-Heffter, A., Gawkowski, M.J.: Towards proof generating compilers. Elec-
tronics Notes in Theoritical Computer Science 132(1), 37–51 (2005)

17. Rinard, M., Marinov, D.: Credible compilation with pointers. In: Proc. of the FLoC
Workshop on Run-Time Result Verification, Trento, Italy, (July 1999)

18. Wildmoser, M., Nipkow, T.: Certifying machine code safety: Shallow versus deep
embedding. In: Theorem Proving in Higher Order Logics, Springer, Heidelberg
(2004)

19. Zuck, L., Pnueli, A., Fang, Y., Goldberg, B.: VOC: A methodology for the trans-
lation validation of optimizing compilers. Journal of Universal Computer Sci-
ence 9(3), 223–247 (2003)

Instrumentation of Open-Source Software
for Intrusion Detection

William Mahoney and William Sousan

University of Nebraska at Omaha 282F PKI 6001 Dodge Street, Omaha Nebraska
68182-0500

wmahoney@mail.unomaha.edu, wsousan@mail.unomanha.edu

Abstract. A significant number of cyber assaults and intrusion at-
tempts are made against open source software written in C, C++, or
Java. Detecting all flaws in a large system is still a daunting, unrealis-
tic task. The information assurance area known as "intrusion detection"
(ID) senses unauthorized access attempts by monitoring key pieces of
system data. There is a desire to at least detect intrusion attempts in or-
der to stop them while in progress, or repair the damage at a later date.
Most ID systems examine system log files, or monitor network traffic.
This research presents a new approach to generating records for intru-
sion detection by means of instrumentation. Open source code such as a
web server can be compiled and the execution path of the server can be
observed externally in near real-time. This method thus creates a new
data source for ID which can be incorporated into a discovery system.

Keywords: Intrusion Detection, Instrumentation, Domain Specific
Language.

1 Introduction

Intrusion detection is an area of information assurance which deals with mon-
itoring the events occurring in a computer system or network, analyzing them
for signs of security problems [1]. These systems are typically one of two types:
Anomaly Detection, and Misuse Detection. Misuse Detection can be thought of
as similar to virus detection software, where one searches for known patterns
of attack. Anomaly Detection uses statistical methods to determine "typical"
behavior, and then monitors various data sources for "atypical" behavior. Both
methods, though, often utilize two sources of input data. These sources are sys-
tem logs, which track files accessed, user activity, and so on, and network traffic.

This research paper describes a new data source which we are using to perform
intrusion detection; this data source is a running executable program, typically
a recompiled open-source package, which has been instrumented in order to
generate tracing data. We outline our intrusion detection scheme and include
contributions to intrusion detection in two main foci.

First, we discuss the techniques used to modify the internal representations
used by the GCC compilers to allow this instrumentation. The compiler uses

O. Sokolsky and S. Tasiran (Eds.): RV 2007, LNCS 4839, pp. 151–163, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

152 W. Mahoney and W. Sousan

an internal representation called RTX. Additional calls to the instrumentation
functions are automatically generated in RTX by our modified compiler just
prior to emitting assembly language output. The research paper addresses the
techniques for locating the instrumentation points and avoiding problems when
software is compiled with optimization. We also present figures addressing the
slowdown due to the instrumentation overhead that results by including our
monitoring code. The slowdown in compute-bound programs is significant, but
our focus is typified by heavily I/O bound processes such as web servers. This
work is completed and the modifications to GCC have been successfully tested
on several large open source projects.

Secondly, we have designed and describe a simple a priori domain specific
language which we are implementing as a proof of concept system to determine
the feasibility of this method for intrusion detection. Our system does not cur-
rently encompass any learning modes; instead we manually enter rules based on
the past known good observed behavior of the software we are compiling for in-
strumentation. This portion of our research is partially completed and currently
ongoing; the paper outlines the direction in which we are headed in order to
support our ID system.

Section two of this paper contains a short review of typical methods used for
intrusion detection for those that may not be familiar with the concepts. Section
three includes details of the first focus of our research, instrumentation within
open-source software. This is followed by an overview of the intrusion detection
domain language in section four. Section five contains early experimental results.
Finally, we conclude by outlining some areas in which our research is currently
headed, and our motivations for future work.

2 Intrusion Detection Overview

There are several traditional methods used for intrusion detection, which can be
categorized into two broad classes: Anomaly Detection, and Misuse Detection.

Anomaly Detection uses statistical approaches and pattern prediction tech-
niques to generate profiles of "typical" user interaction with a system. For ex-
ample, a certain percentage of the page accesses on a web site may be to a log-in
page, and a certain percentage may refer to a page showing the users "shopping
cart". Occasionally the user will mistype their password and the login will fail;
for this and other reasons, one might suppose that it is likely that more refer-
ences are be made to the login page than the shopping cart page. If certain pages
such as the shopping cart page are suddenly referenced far more frequently, the
system would view this as unusual activity which may indicate an intrusion at-
tempt. Anomaly detection has advantages and disadvantages, and this method is
often used in conjunction with others. The advantages of this technique include
the capability to detect intrusions which other methods miss, and the fact that
the systems are generally adaptable to change over time. But anomaly detection
via statistical approaches suffers from an obvious few drawbacks. For example,
a nefarious user who knows that the system is adaptable can gradually change

Instrumentation of Open-Source Software for Intrusion Detection 153

the probability for future events until the system behavior is considered to be
normal. At that point the attacker can penetrate the system without triggering
any of the detection alarms. As a counter to these approaches, many anomaly
intrusion detection systems also incorporate some form of neural network, which
may also be based on statistics but not adaptable, which predicts a user’s next
activity and signals an alarm when this prediction is not met.

Misuse Detection systems are typified by expert system software which has
knowledge of many known attack scenarios and can monitor user behavior search-
ing for these patterns. A misuse detection system can be thought of as more
similar to anti-virus software, which continually searches files and memory for
known attack patterns, and alerts the user if any are matched. Misuse systems
include a state-based component called an "anticipator", which tries to predict
the next activity that will occur on a system. A knowledge base contains the
scenarios which the expert system uses to make this prediction, and the audit
trail in the system is examined by the expert system to locate partial matches to
these patterns. A wildly differing "next event" in a pattern could be an indicator
that an intrusion attempt is in progress.

Both types of intrusion detection systems can rely on a variety of data sources
in order to build an accurate picture of the normal versus abnormal system ac-
tivity. However these data sources are almost exclusively comprised of two types:
network traffic, and audit logs [2]. Our research introduces a third component
which is monitoring an actively executing process.

3 Basic Block Instrumentation in GCC

A region of code that has only a single entry point and a single exit point
(everything from a label up to a jump or return instruction) is called a basic
block. The start of a basic block might be jumped to from multiple locations and
the end of a basic block might be a jump to a different basic block. The basic
blocks thus form a directed graph in the compiled code, called the control flow
graph. A typical small program may easily contain hundreds of these basic blocks;
in fact there could be hundreds in a single function within a larger software
system. Basic blocks are the fundamental "straight line" sections of code within
the larger framework of the program. A single line of executable code may contain
several basic blocks, or a basic block may span several lines. As an example
consider the following snippet of code in Fig. 1, which has the basic blocks
identified:

The first step in generating execution trace data from a program is to in-
strument the basic blocks within the program as it is being compiled. These
instrumentation points will insert calls to an instrumentation function, which
can be inserted into the program when the object files are linked. Alternatively
it can be added as a dynamic library, although we currently do not do this in
order to simplify our design.

154 W. Mahoney and W. Sousan

i = 0;

while (i < 20)

{

sum = sum + i * i;

 sum++;

i++;

}

Fig. 1. Basic Blocks within Sample Code

In the process of converting source code into machine code, the GCC compilers
perform several steps:

– The front end language is converted into a parse tree.
– The parse tree is converted into a more simplistic format called "gimple".
– The gimple format may be optimized.
– The gimple format is converted into a register transfer level representation

called RTL, also called RTX.
– The RTX code may optionally be optimized. Whether or not optimization

is performed has an impact on the slowdown due to instrumentation, as we
will describe below.

– The RTX is converted to assembly language, which is then assembled by a
separate program.

Within the GCC internal RTX format, the basic blocks appear on a linked
list. Each basic block structure delimits the beginning and ending of the RTX
code which corresponds to that block. The entire RTX for a function is contained
on a doubly linked list, with the basic blocks as pointers into this list.

In order to instrument a function, the list of basic blocks in that function is
traversed, and for each basic block, additional RTX is inserted into the beginning
of the block. The inserted RTX consists of a call to an external function, with
appropriate parameters passed as arguments. Included in the RTX are both exe-
cutable code instructions, and information nodes. Information nodes are a form
of commentary and include the name and line number of the original source
code. Our arguments to the instrumentation function include the address of the
function (which will be resolved at link time), the basic block number, and the
line number in the source code that this block is associated with. This additional
RTX will yield an assembly language call to our instrumentation function. In-
cluded in the basic block structures is a list of the "live" registers at the beginning
of that block, as well as the block number which is unique within the compiled
function’s linked list. We desire to have the line number and block number infor-
mation. This requires that our compiler modifications search the RTX sequence
to locate information nodes containing the line numbers and consult the basic
block structures for the block numbers. A search proceeds backwards from the

Instrumentation of Open-Source Software for Intrusion Detection 155

end of the basic blocks RTX until the proper type of information node entry is
located. The line number is then inserted into the parameters as a constant that
will be passed to the function via a normal value parameter. The block number
is obtained from the basic block structure corresponding to this section of RTX.

Since the source code is compiled function by function, there must be an
assembly language target label generated for the function. This is the location
that a "call" instruction will aim for when the program is executing, and the
assembler and linker are responsible for converting the symbolic name over to an
address. For these reasons, one of the first RTX nodes in a linked list belonging
to a function must be the symbolic name of that function. The RTX is scanned
until this data is located, and thus the name of the function can be inserted
directly as one of the parameters on the instrumentation call. Note that one can
simply place the name (i.e. "main") in the RTX and the assembler and linker
that is "down stream" will handle converting this to an address at assembly and
link time.

Thus the instrumentation function will be called with an integer argument
containing the source line from the original code, the address of the compiled
function, and the basic block number within that function. The C-style proto-
type for the destination of this call appears as:

void __cyg_block_enter(void *func, unsigned int line, unsigned int block);

Once the compilation is complete it is necessary to supply this function to
the linker so that there are no unresolved references. Note, though, that this
function can perform just about any desired aim - sending the execution trace
information to an external intrusion detection module is the aim in our case.

If optimization is enabled for the compiled code, the situation is somewhat
more complex. A basic block is considered to be (and is) a straight line section of
code. Adding a function call in the middle of a basic block makes this, theoreti-
cally, no longer a basic block. GCC version 4.1 contains 170 different passes that
might be made through the RTX once it is initially created. Some of these are
relatively simple, warning if a function does not return, for example, while some
are heavily involved in optimization; among these are various loop optimizations,
tail recursion handling, checking for possible aliases, and many others.

Since the optimization is complete before the instrumentation is inserted,
there are registers which, due to global common sub-expression elimination, a
type of optimization, are "live" on the entry to the block. Live registers contain
values which are carried in from predecessor blocks, and it is assumed that they
contain valid variable contents. There are also "live" registers at the end of
each basic block which are then live into another successor block. Since we are
inserting the instrumentation code at the top of the block, we are concerned
with the incoming live registers and not the outgoing live registers. In order to
insert our instrumentation without having an impact on the executable code,
it is necessary to save and restore these registers around the instrumentation
function call. Initially we accomplished this by saving these in a static array;

156 W. Mahoney and W. Sousan

this prevents one from instrumenting code which is multi-threaded, and many of
the target software packages we wish to test with (e.g. Apache) can be compiled
as threaded code. Our current system pushes these incoming live registers on the
stack prior to the instrumentation call, and restores them after the call. Since
each thread contains a separate stack area, this local storage of registers solves
the multiple thread issue. One result of this is that there is a larger slowdown
when instrumentation is added to an optimized program, because of the added
work in saving and restoring these registers.

Lastly, we note that our modified compiler appears to share some common
features with the Linux utility "gcov", and similar software engineering programs
which are used for verifying that each line of code has been executed and tested.
However "gcov" operates in a batch mode where it first collects statistics, and
then later displays the program coverage. Our modifications create trace infor-
mation as each block of the original code is executed at run time. Our data could
obviously be saved to a file for later analysis, similar to "gcov". But the data is
readily available as the program executes and thus can serve as an immediate
data feed to our misuse detection system. Utilizing the "gcov" data at a later
time would require one to stop the process that is being used for ID, save the
logged data, and then restart the process. In addition, our system has the ca-
pability to change the coverage dynamically during runtime. We can enable and
disable the instrumentation on a function by function basis, without restarting
the program. For our ID system this is not utilized, but if one wished to add
additional ID methodologies on the fly it would not be necessary to stop the
instrumented process.

4 The Intrusion Detection Domain Language

Once the data from an executing process is available, the subsequent problem is
to utilize this data for instruction detection. Here the method we are employing
is to use this data as a source for a set of deterministic finite automatons (DFAs)
which monitor the program. DFAs are a popular logical choice, although other
current research in this area includes a trinary tree based approach [3].

Our instrumentation compiler is first used for software which is run in a
controlled environment in order to gather typical usage patterns. These patterns
are ideal for an "anticipator" module in a misuse detection system, as they
are made up of the actual execution path of the software under typical usage
scenarios. But currently this data is used solely for the manual creation of the
intrusion detection rules. The data included in the instrumentation tracks each
procedure entry and exit point in the software as well as the entry to each basic
block in the compiled code.

Prior to examining the syntax for the language it is useful to consider the
data being emitted from the monitored program. One such program which we
test with is called "thttpd" - the tiny HTTP daemon [4]. Since our current

Instrumentation of Open-Source Software for Intrusion Detection 157

system is in a prototype mode we have a separate program as "middleware"
that converts the raw function address sent out of the process over to the pro-
cess name. Of course this is just a convenience, and everything could be accom-
plished, albeit in a format not as easy to read, with the "raw" addresses passed
to the instrumentation function as described above. Recall that each call to the
instrumentation has three items: the function address, the line number, and the
basic block number used during the compilation. In our test environment these
are converted back to the function name for simplicity and to make the testing
more human readable. For example the "thttpd" server periodically times out
and does housekeeping chores:

tmr_run entry
tmr_run 261 14
tmr_run 262 2
tmr_run 261 14
tmr_run 262 2
tmr_run 261 14
tmr_run 262 2
(etc.)
tmr_run exit

In order to construct the DFAs we have designed an implemented a domain
specific language (DSL) which is used to create the intrusion detection mod-
ule. Our domain language is a way in which we can specify possible sequences
of events which are expected from the instrumentation output, along with the
successor to that event. In this way, potential state transitions create a DFA.
Since there may be more than one possible path through the software, and since
we can choose to instrument from the beginning of a certain function through
the end of that function, we allow the language user to create multiple DFAs
corresponding to these alternatives. There is one automaton structure for each
possible sequence, and these automatons are combined by "or-ing" them to-
gether at the starting state. The DFAs then are traversed in parallel according
to the instrumentation output of the program being observed. It is simpler, and
the description which follows uses this method, to consider the DFAs as being
traversed "in parallel".

Unlike a typical pattern-based intrusion detection system, where reaching a
complete pattern indicates a possible attack, a final state in our DFA represents
exactly the opposite - a normal sequence of events that should generate no
alerts at all. Thus, final states in the DFA correspond to acceptable sequences
of events, while a sufficient number of invalid transitions may be an indicator of
an intrusion attempt. Reaching a final state causes all automatons to reset to
their initial state. Our language is thus compiled from a human readable format
into this set of automatons, which the intrusion detection system then matches
against the instrumentation coming from the server program in near real-time.

158 W. Mahoney and W. Sousan

Since there is naturally a correspondence between the languages accepted by
a DFA and the set of regular languages, we have selected syntax not unlike oper-
ations normally seen in regular expressions. Specifically, alternation, catenation,
and Kleene ("star") closure are included. Also included as shortcuts are the usual
usage of "+" for positive closure and "?" as an optional element. There is also a
time component in the grammar, which will be explained shortly. The grammar
for our DSL is as follows in Fig. 2:

program -> program rule | ε
rule -> ’within’ INT ’max’ INT func
func -> ’(’ identifier not_empty ’)’
elist -> expression { ’|’ expression } | ε
expression -> ’(’ not_empty ’)’ optmod
not_empty -> item { item }
item -> elist | identifier | INT
optmod -> ’+’ | ’*’ | ’?’ | ε

Fig. 2. Domain Specific Intrusion Detection Language

In the usual EBNF notation, braces ’{’ ’}’ surround zero or more repeated
items, a vertical bar ’|’ indicates alternates, and ε represents the empty string.

Informally, the semantics of the language are as follows: a program is a col-
lection of rules, and each rule has timing requirements specific to that rule. The
expression portion of a rule consists of a not empty list of function names and
block numbers. Lists can contain sub-lists with the same syntax, and all lists may
contain modifiers such as "*" which apply to the entire preceding list. Rules must
start at the highest level with a function name; that is, the outer-most list within
a rule must begin at a function entry point.

Using this syntax and the above sample data, a pattern the user might write
to represent the previous execution path might be:

within 30 max 10
(tmr_run

(14 2 (3)?)+)

The normal course of events is starts with an entry to the function "tmr_run".
This is followed by block 14, then block 2, and occasionally block 3 (not shown
in the sample data). Note that the line numbers are not used in the description -
only the block numbers are considered. This path is often executed in the code,
(and in fact the original example data has it repeating for 140 lines). Since the
function "tmr_run" is a timeout function for housekeeping purposes, we see this
repeat approximately every 10-15 seconds. The initial specification of the rule
indicates that we must see this within 30 seconds, and it must not take longer
than 10 seconds to match this rule. Of course we have selected a very simple

Instrumentation of Open-Source Software for Intrusion Detection 159

example with a correspondingly simple pattern to match. A portion of the pat-
tern used when a page is served to the user, is:

within 0 max 10
(handle_newconnect

22 4 7 (8 10)? 11
(httpd_get_conn

(2
(httpd_realloc_str

2 6)+
)?
3 7
(sockaddr_check

2 5)
9
(sockaddr_len

2 5)
))

Since we do not know when to "expect" a page to be served, the "within"
section contains zero. This indicates that there is no timeout associated with
how frequently we need to see this function execute in the process.

Currently we are constructing these patterns by hand; an obvious area listed
under our future research is a system which will automate this process to a
certain extent. Also note that we are only using the block numbers and not the
line number data, as either one or the other is redundant.

Our current implementation generates a DFA corresponding to the DSL given
by the user. There is no attempt to minimize or optimize this DFA in any way -
there may very well be duplicated states which would normally be removed when
the DFA is minimized. Most automata text books, such as Linz [5], contain stan-
dard DFA minimization algorithms, and we will no doubt take advantage of these
in the future. The rationale behind deferring this DFA minimization is that it
allows us to further the research by investigating "approximate automata" [6] .
An "approximate automaton" allows the language accepted by the user specifi-
cation to be a subset of the language accepted by the automaton: L(USER) ⊆
L(DFA). Very large automata tend to be unwieldy, and a great deal of effort has
been invested in tuning DFA algorithms for large pattern matching applications;
in the case of pattern matching, approximate automata are sometimes referred
to as "factor oracles" [7] .

When searching for viruses or other patterns using traditional intrusion de-
tection, the final state in a DFA indicates a virus or other nefarious item. Thus
an approximate DFA is sufficient because if a pattern is matched, it can be
vetted separately using a longer algorithm or more accurate DFA and corre-
sponding language. If the pattern does not match L(DFA) then it certainly does
not match L(USER), and therefore it can be ignored. This creates the possibility
for a fast rejection of most data, with the possible signatures falling through for

160 W. Mahoney and W. Sousan

further examination. Approximate automata used in this way are often based
on Brzozowski’s construction algorithm [8].

In our intrusion detection scheme, though, the final states in the DFA indicate
a successful transition from the starting point of the trace data to the ending
point of the trace data; in other words, there is no detected intrusion; "a positive
result is a negative result". Either transitioning to an "error state" in the DFA
or exceeding the time limits set forth in the rule indicates a potential intrusion.

The technique we are utilizing for the DFA construction is based on the stan-
dard construction algorithm by Thompson [9], also covered in most introductory
automata texts. In this case the algorithm first constructs a nondeterministic fi-
nite automata (NFA), and then merges sets of NFA states to create the DFA.
Using this method and our short example rule, we might generate the DFA
shown in Fig. 3.

tmr_run 14
14

2

14 3

tmr_run

Exit

tmr_run

Exit

Fig. 3. DFA Prior to Similarity Test

Each DFA state corresponds to the set of NFA states that the non-deterministic
machine would have been in, given a certain previous set of states and an input
symbol. Once the DFA is constructed, the list of these corresponding NFA states
is easily maintained within the DFA state data structure as a set:

N(i) = { s | DFA state i was created from NFA state s }

Thus, we can use this data to determine some measure of the "similarity" of
any two DFA states. If the states are greater than a certain similarity, they can
potentially be merged into one state in the resulting DFA. The entry point to a
function in the DSL specification and the exit point for the function in the DSL
specification will never be merged. At the top-level of one of the parallel DFAs
these correspond to the start and final states of the DFA handling that DSL
statement. Currently we are experimenting with this method and we consider
the similarity as:

S(i,j)=|N(i) ∩ N(j)| / (|N(i)|+|N(j)|),

the ratio of the original NFA states which are in common between two DFA
states. If the ratio exceeds an experimental parameter, the DFA states will be
merged; an example is shown in Fig. 4.

Instrumentation of Open-Source Software for Intrusion Detection 161

tmr_run 14
14

2

3

tmr_run

Exit

Fig. 4. DFA After Similarity Test

Lastly we note that speed is an issue. We utilize DFAs in the intrusion de-
tection matching specifically because of their faster implementation relative to
NFAs. Although there is a certain amount of buffering between the instrumented
program which is generating the data and the intrusion detection program which
is monitoring it, we wish to execute the original software as quickly as possible
and not have it blocked when calling "write" with data! An interesting com-
parison between various NFA and DFA algorithms is made by Cox [10], who
states that "Today, regular expressions have also become a shining example of
how ignoring good theory leads to bad programs". His comparison between an
implementation of DFAs using C versus NFAs using Perl is insightful.

5 Experimental Results

One issue to deal with is the slowdown due to the instrumentation of the ap-
plication. Calculating the performance impact of instrumented code is difficult
because the time penalty depends almost entirely on the actions performed by
the supplied user functions. That is, writing the execution records into a file or
a pipe has a much greater impact on the execution time than would updating
counters in a memory mapped shared data segment. For these reasons we tested
the performance impact by measuring the effect of the instrumentation calls,
with the actual called functions performing no action. The programs we have
utilized to measure the slowdown due to instrumentation represents a "worst
case" scenario - heavily compute bound and containing many small, tight loop-
ing constructs. Two test programs were run, one which we obtained and one
which we authored. Our test program approximates the value of π using an
iterative method by John Wallis (1616-1703). The program also calculates an
approximation of φ (the golden ratio) using the Fibonacci sequence. For π, one
million double floating point factors are taken into account and the calculation
is repeated 100 times. For φ, one million loop iterations are executed, or up
to a Fibonacci number which overflows a 64-bit integer, whichever comes first.
For the public domain benchmark we utilized the Fhourstones Benchmark ver-
sion 3.1 [11]. The tests were run on a 1.4 GHz AMD Opteron dual-CPU machine

162 W. Mahoney and W. Sousan

running Linux; however since the programs are not threaded, only one processor
is loaded. The averages of the slowdown due to instrumentation are shown in
Fig. 5 (times are in seconds):

Description Time Slowdown

Pi Test, no instrumentation, no opt. 2.50

Pi Test, instrumentation, no opt. 4.54
1.81

Pi Test, no instrumentation, O2 1.20

Pi Test, instrumentation, O2 3.24
2.70

Pi Test, no instrumentation, O3 1.21

Pi Test, instrumentation, O3 3.25
2.69

Fhourstones, no instrumentation, no opt. 712

Fhourstones, instrumentation, no opt. 1375
1.93

Fhourstones, no instrumentation, O2 428

Fhourstones, instrumentation, O2 1210
2.83

Fhourstones, no instrumentation, O3 353

Fhourstones, instrumentation, O3 973
2.76

Fig. 5. Slowdown

The need to save and restore live registers, as outlined in section three, ac-
counts for the greater slowdown factor on optimized code versus un-optimized
code. Notice that the process with optimization still outperforms the same pro-
cess without optimization, but that the slowdown due to the inserted instrumen-
tation is greater due to the necessity of saving the live registers.

Our target for intrusion detection, though, is software such as web servers,
DHCP servers, etc. which are typified by small bursty CPU requirements, followed
by extended periods of inactivity. Thus we believe that the slowdown figures shown
should not deter us from using this technique for intrusion detection. So currently
our intrusion detection laboratory consists of several instrumented web servers:
"Apache" [12], "Fizmez"[13], "monkey" [14], and "thttpd"[4]. The patterns we
have shown as examples in this paper correspond to execution traces from
"thttpd"; however the selection of software was made based on several factors.

6 Conclusions Thus Far and Future Research

Much, but not all, of our experimentation software is complete. Thus, there are
several areas which we would like to complete and further explore, including the
following:

– A comparison of the actual DFA sizes versus the patterns used in typical
instrumented code remains to be seen. We are not sure to what extent the
approximate automata might be necessary.

Instrumentation of Open-Source Software for Intrusion Detection 163

– It also remains to be seen what impact the approximate automata have on
detecting actual intrusions in open source code.

– Is our domain specific language sufficient for all patterns which we might
want to construct for our intrusion detection efforts?

– We’ve been unable to determine any slowdown in our instrumented web
servers, due to the short bursts of activity. We must next generate sufficient
network request traffic so that the effects of the instrumentation can be
measured easily.

We feel, though, that this method represents an exciting new method for moni-
toring applications and providing an additional data source for intrusion detec-
tion. Given the quantity and questionable quality of open-source software this
method could be a very useful tool.

References

1. Gurley, R.: Intrusion detection (2000)
2. DARPA: Darpa intrusion detection evaluation data sets 2007,

http://www.ll.mit.edu/IST/ideval/index.html
3. Huang, J.-c., et al.: Research of pattern matching in intrusion detection. In: Pro-

ceedings of the Second International Conference on Machine Learning and Cyber-
netics, pp. 2–5 (November 2003)

4. Poskanzer, J.: thttpd - tiny/turbo/throttling http server (2007),
http://www.acme.com/software/thttpd/

5. Linz, P.: An introduction to formal languages and automata (2006)
6. Watson, B., et al.: Efficient automata constructions and approximate automata.

In: Prague Stringology Conference proceedings (2006)
7. Cleophas, L., et al.: Constructing factor oracles. In: Prague Stringology Conference

proceedings (2003)
8. Brzozowski, J.A.: Derivations of regular expressions. JACM 11(4), 481–494 (1964)
9. Thompson, K.: Regular expression search algorithm. In: CACM, pp. 419–422 (June

1968)
10. Cox, R.: Regular expression matching can be simple and fast (but is slow in java,

perl, php, python, ruby (2007), http://swtch.com/rsc/regexp/regexp1.html
11. Tromp, J.: The fhourstones benchmark version 3 (2007),

http://homepages.cwi.nl/tromp/c4/fhour.html
12. Apache: Apache http server project, http://httpd.apache.org/ (2007)
13. Bond, D.: Fizmez web server (2007), http://freeware.fizmez.com/
14. Silva, E.: Monkey http daemon (2007), http://monkeyd.sourceforge.net/

http://www.ll.mit.edu/IST/ideval/index.html
http://www.acme.com/software/thttpd/
http://swtch.com/rsc/regexp/regexp1.html
http://homepages.cwi.nl/tromp/c4/fhour.html
http://httpd.apache.org/
http://freeware.fizmez.com/
http://monkeyd.sourceforge.net/

Statistical Runtime Checking of

Probabilistic Properties

Usa Sammapun1, Insup Lee1, Oleg Sokolsky1, and John Regehr2

1 University of Pennsylvania
{usa,lee,sokolsky}@cis.upenn.edu

2 University of Utah
regehr@cs.utah.edu

Abstract. Probabilistic correctness is an important aspect of reliable
systems. A soft real-time system, for instance, may be designed to toler-
ate some degree of deadline misses under a threshold. Since probabilistic
systems may behave differently from their probabilistic models depend-
ing on their current environments, checking the systems at runtime can
provide another level of assurance for their probabilistic correctness. This
paper presents a statistical runtime verification for probabilistic prop-
erties using statistical analysis. However, while this statistical analysis
collects a number of execution paths as samples to check probabilistic
properties within some certain error bounds, runtime verification can
only produce one single sample. This paper provides a technique to pro-
duce such a number of samples and applies this methodology to check
probabilistic properties in wireless sensor network applications.

Keywords: Runtime verification, statistical monitoring, probabilistic
properties.

1 Introduction

Probabilistic correctness is an important aspect of reliable systems, which could
tolerate some undesirable behaviors such as deadline misses or data loss. For
example, unlike hard real-time systems that strictly require computation to
complete within its deadline, soft real-time systems can tolerate some degree
of deadline misses. We can characterize this degree in terms of the acceptable
probability of a deadline miss. Another example is a wireless sensor network
application with probabilistic constraints on its behaviors to tolerate some de-
gree of data loss. Since probabilistic systems may deviate from their probabilis-
tic requirements due to unexpected environments or incorrect implementation,
checking the systems at runtime in addition to a static probabilistic check can
provide additional level of assurance for their probabilistic correctness.

Runtime verification is a technique for checking correctness of a system at
runtime by observing a system execution and checking it against its property
specification. One runtime verification framework is called MaC or Monitoring
and Checking [9,12]. MaC provides expressive specification languages based on
Linear Temporal Logic [11] to specify system properties. Once the properties

O. Sokolsky and S. Tasiran (Eds.): RV 2007, LNCS 4839, pp. 164–175, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Statistical Runtime Checking of Probabilistic Properties 165

are specified, MaC observes the system by retrieving system information from
probes instrumented into the system prior to the execution. MaC then checks
the execution against the system properties and reports any violations.

To check probabilistic properties, runtime verification can adopt the statisti-
cal technique [16] used in model checking to verify probabilistic properties. The
statistical technique simulates, samples many execution paths, and estimates
probabilities by counting successful samples against all samples. After the prob-
abilities are estimated, statistical analysis such as hypothesis testing is used to
determine statistically whether a system satisfies a probabilistic property with
a given level of confidence.

One particular difficulty in using this technique in runtime verification, how-
ever, is that a runtime checker follows only one execution path and cannot easily
collect many different executione paths as in probabilistic model checking. There-
fore, this one execution path, usually in a form of a trace of states or events, needs
to be decomposed into different individual samples, which can be done only if a
probabilistic system being observed has repeated or periodic behaviors. Such be-
haviors are typically exhibited by the systems in our target domain. Soft real-time
schedulers repeatedly schedule tasks; network protocols repeatedly transmit or
receive messages. This paper describes how MaC can break down one execution
into different individual samples and how MaC adopts the statistical technique
to check probabilistic properties at runtime. This technique has been applied to
check probabilistic properties in wireless sensor network applications.

Our contributions are: 1) we provide a general statistical technique for check-
ing probabilistic properties at runtime, 2) the technique is described to and
implemented in an existing runtime verification framework called MaC, and 3)
a case study is presented for checking probabilistic properties in wireless sensor
network application.

Related Work. Runtime verification frameworks based on Linear Temporal
Logic, such as Java PathExplorer [7], work by Kristoffersen et al. [10], and work
by Stolz and Bodden [13], typically cannot be used to check probabilistic prop-
erties. Those that provide probabilistic properties such as Eagle [1], Temporal
Rover [4], and a framework by Jayaputera et al. [8] do not prescribe statistical
analysis to support the estimated probabilities. Finkbeiner et al. [5] discussed
collection of statistics over execution traces, yet their work was not concerned
with probability estimation.

2 Background: MaC

Monitoring and Checking or MaC [9,12] is an established runtime verification
framework that can be used to check whether that a program is executing cor-
rectly with respect to its formal requirement specification. Before execution,
specification is written, and a program is instrumented with probes to extract ob-
servation. During runtime, a program execution is observed and checked against
the formal specification. An event recognizer detects low-level observation spe-
cific to program implementation and transforms it into high-level information,

166 U. Sammapun et al.

which is forwarded to a checker. A checker determines whether the high-level in-
formation satisfies the formal specification. If violations are detected, the checker
reports to the user.

The main aspect of MaC is the formal requirement specification. MaC pro-
vides two specification languages. The low-level monitoring specification or Prim-
itive Event Definition Language (PEDL), defines which low-level application-
dependent observation is extracted, and how the observation is transformed into
high-level information. The high-level requirement specification or Meta-Event
Definition Language (MEDL), based on Linear Temporal Logic (LTL) [11], al-
lows one to specify safety properties in terms of high-level information. PEDL
is tied to a particular implementation while MEDL is independent of any imple-
mentation. Only MEDL is presented in this paper. See MaC [9] for PEDL.

High-level information in MEDL can be distinguished into events or condi-
tions. Events occur instantaneously during execution, whereas conditions repre-
sent system states that hold for a duration of time and can be true, false , or
undefined . For example, an event denoting a call to a method init occurs at
the instant the control is passed to the method, and a condition v < 5 holds as
long as the value v is less than 5. Events and conditions can be composed using
boolean operators such as negation !, conjunction &&, disjunction ||, and other
operators, as shown in Fig. 1.

E ::= e | E||E | E&&E | start(C) | end(C) | E when C
C ::= c | !C | C||C | C&&C | C → C | defined(C) | [E, E)

Fig. 1. Syntax of events and conditions

There are some natural events associated with conditions, namely, an instant
when a condition C becomes true and false, denoted as start(C) and end(C),
respectively. An event (E when C) is present if E occurs at a time when a
condition C is true. A condition defined(C) is true whenever a condition C has
a well-defined value, namely, true or false. Any pair of events define an interval
forming a condition [E1, E2) that is true from an event E1 until an event E2.

MEDL distinguishes special events and conditions that denote system spec-
ification. Safety properties are conditions that must always be true during an
execution. Alarms, on the other hand, are events that must never be raised. From
the viewpoint of expressiveness, both safety properties and alarms correspond
to the safety properties [11].

3 Probabilistic Properties

MaC offers additional syntax and semantics for specifying probabilistic prop-
erties. To check these probabilistic properties, MaC adopts a statistical tech-
nique used in model checking [16]. The statistical technique simulates, samples

Statistical Runtime Checking of Probabilistic Properties 167

many execution paths, and estimates probabilities by counting successful sam-
ples against all samples. MaC and other runtime verification frameworks operate
on the current execution path and are not typically designed to accumulate data
from many different execution paths. Because of this, the current execution path,
usually in a form of a trace of states or events, needs to be decomposed into non-
overlapping individual samples, which can be done only if a probabilistic system
being observed has repeated or periodic behaviors such as soft real-time sched-
ulers or network protocols.

To decompose an execution, MaC distinguishes one repetitive behavior from
another by using conditional probabilities. Written in terms of probabilistic prop-
erties, one can specify as given a condition A, does the probability that an out-
come B occurs fall within a given range? In terms of MaC events, one can specify
as given that an event e0 occurs, does the probability that an event e will occur
fall within a given threshold? This way, a sample space is reduced from events of
the entire system to only those events relevant to a given probabilistic property.
A set of e0 and e can be collected as one individual sample, and a sequence of
these sets can be collected as many different individual samples.

The probability observed from the system can be estimated by counting the out-
come event e that occurs in response to the given event e0 against all the outcome
event e. After probabilities are estimated, MaC uses statistical analysis to deter-
mine statistically whether a system satisfies a probabilistic property using hypoth-
esis testing. Hypothesis testing provides a systematic procedure with an adequate
level of confidence to determine the satisfiability of probabilistic properties.

3.1 Syntax

To specify probabilistic constraints, we extend MaC with a probabilistic event
operator. The operator expresses the property that an event e occurs within
a certain probability threshold given that an event e0 occurs. The syntax for
the new operator is e pr(�p0, e0) where � ∈ {<, >} and p0 is a probability
constant. The event e pr(�p0, e0) can be used in any context where ordinary MaC
event operators (listed in Fig. 1) can. This event is raised when the checker has
accumulated enough confidence to reject the hypothesis that the above property
does not hold.

3.2 Semantics

To give semantics for the probabilistic properties, we describe how samples can
be collected from an execution and then show how to use hypothesis testing
over this set of samples to determine statistically the satisfaction of probabilistic
properties.

Recall that we have to answer the following question: given that an event
e0 occurs, does the probability that an event e will occur fall within a given
threshold? Such probabilistic properties can be defined directly using conditional
probabilities as

Pr(e|e0) =
Pr(e and e0)

Pr(e0)

168 U. Sammapun et al.

To estimate Pr(e and e0), let m be the number of occurrences of all MaC
events in the trace. Let’s call these MaC events experiments. Let X = X1 +
X2 + ... + Xm be the random variable representing the number of successful
experiments. Here, Xi is the random variable representing the result of the ith

experiment. Then, Xi = 1 when the ith experiment is successful, and Xi = 0
otherwise. The experiment is successful when e occurs in response to e0. By this
we mean that either e occurs at the same time as e0, or e follows an occurrence
of e0, without a prior occurrence of e in between. Formally, Xi = 1 when the
event e′ = e && (e0 || end([e0, e))) occurs at time ti, and Xi = 0 otherwise.
Note that our notion of “occurs in response” does not necessarily imply a causal
dependency between the most recent occurrence of e0 and the current occurrence
of e, but reflects the fact that there is an occurrence of e0 that has not been
matched to an earlier occurrence of e.

Therefore, each Xi has a Bernoulli distribution with an unknown parameter
q ∈ [0, 1] where Pr(Xi = 1) = q, meaning that the probability that e′ will occur
is equal to q. X , therefore, has a Binomial distribution with parameters m and
q. Finally, let q̄ be an observed probability obtained from the samples we collect
where q̄ = X

m = ΣXi

m
Using similar reasoning, let Y = Y1 + Y2 + ... + Ym be a random variable

representing the number of e0 occurrences, where m is the number of all MaC
events or experiments. Yi = 1 when e0 occurs at in the ith experiment, and
Yi = 0 otherwise. Each Yi has a Bernoulli distribution with an unknown pa-
rameter q′ ∈ [0, 1] where Pr(Yi = 1) = q′. Thus, Y has a Binomial distribution
with parameters m and q′. Let q̄′ be an observed probability obtained from the
samples where q̄′ = Y

m = ΣYi

m .
Let p = Pr(e|e0), and let p̄ be an observed probability of p. Since

p = Pr(e|e0) =
Pr(e and e0)

Pr(e0)
=

Pr(Xi = 1)
Pr(Yi = 1)

,

then,

p̄ =
q̄

q̄′
=

ΣXi

m
ΣYi

m

=
ΣXi

ΣYi
.

Hence, the observed probability p̄ is a ratio of the number of occurrences of the
event e′ over the number of e0 occurrences:

p̄ =
|occurrences of e′|
|occurrences of e0|

e′ also ensures that the number of occurrences of e0 is always greater or equal
to the number of occurrences of e && (e0 || end([e0, e))), and thus p̄ will always
be less than or equal to 1. For the rest of this paper, let n be the number of
occurrences of e0.

Hypothesis Testing. Assume one needs to check a probabilistic property
e pr(�p0, e0) where � ∈ {<, >}, and p0 is a probability bound. It means given

Statistical Runtime Checking of Probabilistic Properties 169

that an event e0 occurs, does the probability that an event e will occur fall
within p0? The observed probability p̄ needs to be tested against p0. This is
done by using p̄ to approximate the true Binomial probability p based on a
statistical procedure of hypothesis testing. The first step, done before running
experiments, is to set up two hypotheses H0 and HA. H0, called null hypothesis,
is what we have previously believed and what we want to use the hypothesis
testing to disprove. HA, called alternative hypothesis, is an alternative to H0;
we will believe HA only if the data supports it strongly. In our case, we previ-
ously believe that the probabilistic event does not occur, and we would trigger
the probabilistic event only when we have strong evidence. For example, if the
probabilistic event is e pr(< p0, e0), then H0 is p ≥ p0 and HA is p < p0. Hence,
the acceptance of H0 means M, t �|= e pr(< p0, e0), and the acceptance of HA

means M, t |= e pr(< p0, e0).
To perform hypothesis testing, we first define our test procedure. A test proce-

dure is the rule for making a decision on whether to accept or reject hypothesis.
It has two components: a test statistic and a rejection region. A test statistic
is a function of the sample data that is used to decide hypothesis acceptance
or rejection. A rejection region is a set of values in which a null hypothesis H0
would be rejected. Our test statistic is based on the z-score, which represents
how far a normally distributed sample data is from the population mean. The
z-score allows us to tell whether the difference is statistically significant.

From the Central Limit Theorem, a large number of samples from any dis-
tribution approximates Normal distribution. For the Binomial distribution, the
sample is considered large enough when it satisfies both np ≥ 10 and n(1− p) ≥
10 [3]. Our implementation ensures that these constraints are satisfied before a
decision on the property satisfaction is made. Once the necessary sample size is
reached, the z-score can be used as our test statistic. The following equation is
used to calculate the z-score for p̄ [3]:

Z =
p̄ − p0

√

p0(1 − p0)/n
(1)

Since p̄ = X
Y where X and Y are random variables with Binomial distribution,

then Z is a random variable with an approximately standard normal distribution.
z is defined as the expected value of Z. Positive values of z mean that p̄ is greater
than p0, while negative values mean that it is less than p0. When z is close to
zero, p̄ is close to p0. These simple observation will help us define the rejection
region.

To find the rejection region, we utilize the notion of error bounds. There are
two kinds of error bounds, known as Type I (α) and Type II (β). Type I error
is the probability of incorrectly verifying a property satisfaction and Type II
error is the probability of incorrectly verifying a property violation. Formally,
α = Pr{reject H0|H0 is true} and β = Pr{accept H0|HA is true}. We bound
the acceptable Type I error by the significance level zα, and use this bound as
the rejection region. For example, if H0 : p ≤ p0 and HA : p > p0, then

α = Pr{Z ≥ zα when Z has approximately a standard Normal distribution}

170 U. Sammapun et al.

Rejection Region for e pr(> p0 , e0)

p z

(a) Upper-tailed Test

Rejection Region for e pr(< p0 , e0)

p-z

(b) Lower-tailed Test

Fig. 2. Upper- and Lower-tailed Tests

Since the value of the test statistic can be calculated using (1), hypotheses
and rejection regions can be set up, and a decision can be made. Consider e pr(<
p0, e0) and e pr(> p0, e0).

(a) Upper-tailed test: e pr(> p0, e0). A hypothesis is set up as H0 :
p ≤ p0 and HA : p > p0. The rejection region is z ≥ zα, shown in Fig. 2 (a).
Thus, reject H0 if z ≥ zα, meaning there is strong evidence supporting that p̄ is
greater than p0. Accept H0 otherwise. Hence, an event e pr(> p0, e0) is raised
or M, t |= e pr(> p0, e0) when H0 is rejected because of the strong evidence
supporting that the probability of e occurring given e0 is greater than p0.

(b) Lower-tailed test: e pr(< p0, e0). A hypothesis is set up as H0 : p ≥ p0
and HA : p < p0. The rejection region is z ≤ −zα, shown in Fig. 2 (b). Thus,
reject H0 if z ≤ −zα, meaning there is strong evidence supporting that p̄ is
less than p0. Accept H0 otherwise. Hence, an event e pr(< p0, e0) is triggered
or M, t |= e pr(< p0, e0) when H0 is rejected because of the strong evidence
supporting that the probability of e occurring given e0 is less than p0.

The two error types have an inverse effect on each other: decreasing the value ofα
will increase the value of β. The value of β depends on the true value of a system’s
probability p. Assuming that p = p′, for the upper-tailed test β is the following
function of p′: β(p′) = Pr{Z < zαwhen p = p′}, and can be estimated as

β(p′) = Φ

(

p0 − p′ + zα

√

p0(1 − p0)/n
√

p′(1 − p′)/n
.

)

Similarly, for the lower-tailed test, β(p′) is Pr{Z > −zαwhen p = p′}. Thus,

β(p′) = 1 − Φ

(

p0 − p′ + zα

√

p0(1 − p0)/n
√

p′(1 − p′)/n
.

)

Statistical Runtime Checking of Probabilistic Properties 171

3.3 Discussion

The implemention for checking probabilistic properties is done through a sliding
window technique. When the number of experiments is small, both Type I and
Type II errors can be large. When Type I error or α is fixed and as the number
of experiments increase, Type II error or β decreases providing more reliable
results. Thus, more samples or more experiments can increase the confidence in
the results. However, in our first implementation of hypothesis testing [12], we
noticed that considering too many experiments leads to false alarms.

Recall from the semantics that the z value depends directly on the number of
experiments n. When p0 and the observed probability p̄ are fixed, if n increases,
z also increases and can become very sensitive to p0. It means that when p̄ only
differs slightly from p0, an alarm can be triggered. In practice, the observed
probability that is only slightly different from p0 has little practical significance
while the observed probability that differs from p0 by a large magnitude would
be worth being detected. Thus, our goal is to detect only those behaviors that
greatly differ from the desired probabilistic behaviors.

Consider the miss deadline example specified as missDeadline pr(> 0.2,
startT). If | missDeadline && (startT || end([startT, missDeadline) | is 21
and | startT | events is 100, then the observed p̄ = 21

100 = 0.21 and its z-
score is z = 0.25. With α = 97.5% and zα = 1.96, then z < zα, which
provides no strong evidence that the observed probability p̄ = 0.21 is greater
than p0 = 0.2. Therefore, an alarm is not raised. However, with the same ob-
served probability p̄ = 0.21 where n = 10000 and | missDeadline && (startT ||
end([startT, missDeadline) | = 2100, its z-score is z = 2.50. Assuming the same
α = 97.5% and zα = 1.96, then z ≥ zα, meaning that there is strong evidence
that the observed probability p̄ = 0.21 is greater than p0 = 0.2, and thus, an
alarm is raised. This example shows that the same observed probability and
error bounds can produce different hypothesis testing decisions depending on
the number of experiments considered. It follows that although a higher num-
ber of experiments can provide higher confidence of detecting violations, it also
generates false alarms.

This effect is studied in the area of statistics known as sequential analysis [15].
The proposed solution is to adjust zα when more samples become available. Here,
we provide an alternative solution that keeps the significance level constant but
instead removed older samples from the set. We maintain the sliding window
of samples that keeps the number of experiments used in checking constant.
When the number of observed experiments exceeds the window size, we discard
the earliest experiments. In MaC, the default window size is chosen to satisfy
the constraints np ≥ 10 and n(1 − p) ≥ 10. This way, we can ensure that the
sample size is large enough to approximate Normal distribution and reduce Type
II errors but still not too large to affect the sensitivity of the z-score to large
sample size. We believe that the size of the window should also depend on the
chosen significance level. This relation is the subject of our on-going research.

Sliding windows also help deal with unobservable mode switches in the sys-
tem. For example, a soft real-time task may miss its deadline more often in an

172 U. Sammapun et al.

emergency situation, when a machine is more heavily loaded with extra tasks
to handle the emergency, than in the nominal case, when the machine is more
lightly loaded. Without the sliding window, experiments that occurred before
the mode switch would affect the statistics long after the mode switch happens
and delay — or even prevent — the detection of the probabilistic property viola-
tion in the new mode. The underlying assumption here, of course, is that mode
changes are infrequent relative to the experiments. Precise characterization of
the relationship between mode switching behavior and window size also requires
further research.

4 Case Study: Checking Wireless Sensor Network
Applications

A wireless sensor network (WSN) usually comprises of a collection of tiny devices
with built-in processors that gather physical information such as temperature,
light, or sound, and communicate with one another over radio. WSN applica-
tions sit on top of an operating system called TinyOS [2]. TinyOS provides
component-based architecture with tasks and event-based concurrency allow-
ing applications to connect different components that coordinate concurrency
via tasks and events. TinyOS has a small scheduler and many reusable system
components such as timers, LEDs, and sensors. These components are either
software modules or thin wrappers around hardware components.

TinyOS itself and WSN applications are written in nesC [6], an extension of
C that provides a component-based programming paradigm. Before applications
can be run on hardware, TinyOS itself and applications are compiled into C pro-
grams, which are then compiled again into specific hardware instructions. These
hardward instructions can be downloaded directly onto the physical devices or
a simulator. Most WSN applications are developed and tested on a simulator
before they are deployed in the environment because on-chip testing and debug-
ging are very difficult since it cannot tell a developer what causes the perceived
errors. A simulator usually produces detailed execution steps taken in a program
and allows a developer to examine his or her program to find bugs or errors.

However, the data returned by a simulator may be too detailed and over-
whelming making the process of finding errors difficult. This case study takes a
higher level approach by using MaC to aggregate the simulator data and allows
developers to formally specify specific patterns of bugs or properties that an ap-
plication must hold in an aggregate fashion. Properties of WSN applications may
be specified to examine periodic behaviors, identify a faulty node, and analyze
send and forward behaviors. MaC then monitors the application’s data produced
by a simulator and checks the data against the application’s specification. In this
case study, we use Avrora [14], a widely used simulator for WSN applications.
Avrora provides an instrumentation capability for MaC to retrieve information
about each sensor node running on the network environment within Avrora. It
allows MaC to use this information to monitor and check applications run on
Avrora against their specification requirements.

Statistical Runtime Checking of Probabilistic Properties 173

The result of the monitoring and checking allows us to gain some under-
standing of relevant behaviors of wireless sensor devices and can narrow the gap
between the high-level requirement and the implementation of an application.

0

1

63

852

74

Base

Station

Fig. 3. Possible routes discovered by Surge

For the case study, we chose Surge application [6]. Surge periodically samples
a sensor to obtain environment information such as light or temperature and
reports its readings to a base station. Before sampling, each node discovers a
multi-hop route to a base station in terms of a spanning tree by sending messages
to its neighbor and then establishing an appropriate node as its parent. After the
route is discovered, each node samples environment and sends data to its parent,
which then forwards to its parent until the data arrives at the base station. When
Surge is run on Avrora, node locations must be supplied to the simulator. In this
paper, nine nodes are formed in a 3×3 grid. Figure 3 presents possible multi-
hop routes that can be discovered by Surge. Surge consists of different TinyOS
components such as a timer, a multi-hop router, and a sensor, among others.
Surge wires these TinyOS components appropriately and implements operations
such as a task SendData that reads a sensor and sends data. Tasks from Surge and
TinyOS are logged and sent to MaC to be checked against Surge’s specification.

4.1 Identifying a Faulty Node

One property in the Surge application is to identify a faulty node using proba-
bilistic properties. A node can be identified as faulty if it often fails to send data
periodically or stops sending data where often means with probability of 0.15.
It can be written in terms of a MaC alarm as failSend pr(> 0.15, sendData).
It states an alarm should be raised when a task misses its deadline with a prob-
ability > 0.15 given that an event sendData has occurred. Thus, the observed
probability p̄ can be calculated as follows.

p̄ =
| failSend && (sendData || end([sendData, failSend))) |

| sendData |

Once the properties are specified, MaC can check Surge via Avrora against
these properties. The faulty node error is a physical error rather than a software
error. Because the environment simulated by Avrora is perfect, it is impossible to
detect this error on Avrora unless an artificial bug is introduced into Avrora to

174 U. Sammapun et al.

simulate the unpredictable environment of sensor nodes. In this paper, using the
java class Random, an artificial bug is introduced into nodes 1, 4, and 8, shown
in Figure 3. The faulty nodes would fail to send a message with probabilities
indicated in Table 1. Given the window size of 80 and a 97.5% significance level
(which yields zα = 1.96), an alarm is raised only for Node 4. Note that the
alarm is not raised for Node 8, which barely exceeds the threshold. The absence
of an alarm means that the difference is not statistically significant for the given
confidence level.

Table 1. Probabilistic send in nodes 1, 4, and 8

Node Number of Sends Number of Failss p̄ z Alarm
0,2,3,5,6,7 80 0 0.0 -3.757 No

1 80 5 0.0625 -2.192 No
4 80 19 0.2375 2.192 Yes
8 80 13 0.1625 0.313 No

5 Conclusions

Probabilistic property specifications for runtime verification are needed because
system behaviors are often unpredictable due to ever-changing environments and
cannot be checked statically. Unlike model checking, which can sample multi-
ple execution paths, runtime verification operates on a single execution path,
which needs to be decomposed into non-overlapping samples. We present a tech-
nique to decompose a trace into several samples based on specification of two
kinds of events: one that starts an experiment and the other that denotes its
successful completion. Once samples are collected, the probability of success is
estimated, and the probabilistic property is checked using hypothesis testing.
This paper extends our earlier work [12] by presenting a cleaner semantics based
on conditional probabilities and discusses a new implementation approach that
is based on a sliding window of samples considered in the hypothesis testing. We
present case study, in which we monitor executions of wireless sensor network
applications via a simulator. Future work includes a more thorough analysis
of the sliding window technique and a more complete case study of the WSN
application, directly via their physical devices instead of a simulator.

References

1. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based runtime verifica-
tion. In: Proceedings of 5th International Conference on Verification, Model Check-
ing and Abstract Interpretation, Vanice, Italy, pp. 44–57 (2004)

2. Culler, D.E., Hill, J., Buonadonna, P., Szewczyk, R., Woo, A.: A network-centric
approach to embedded software for tiny devices. In: Henzinger, T.A., Kirsch, C.M.
(eds.) EMSOFT 2001. LNCS, vol. 2211, Springer, Heidelberg (2001)

Statistical Runtime Checking of Probabilistic Properties 175

3. Devore, J.L.: Probability and Statistics for Engineering and the Sciences. Duxbury
Thomson Learning (2000)

4. Drusinsky, D.: Monitoring temporal rules combined with Time Series. In: Hunt Jr.,
W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, Springer, Heidelberg (2003)

5. Finkbeiner, B., Sankaranarayanan, S., Sipma, H.B.: Collecting statistics about run-
time executions. Formal Methods in System Design 27(3), 253–274 (2005)

6. Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler, D.: The nesC
language: A holistic approach to networked embedded systems. In: Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (2003)

7. Havelund, K., Roşu, G.: Java PathExplorer – A runtime verification tool. In: Pro-
ceedings of the 6th International Symposium on Artificial Intelligence, Robotics
and Automation in Space (2001)

8. Jayaputera, J., Poernomo, I., Schmidt, H.: Runtime verification of timing and
probabilistic properties using WMI and .NET. In: Proceedings of the 30th EU-
ROMICRO Conference (2004)

9. Kim, M., Kannan, S., Lee, I., Sokolsky, O., Viswanathan, M.: Java-MaC: a runtime
assurance approach for Java programs. Formal Methods in Systems Design 24(2),
129–155 (2004)

10. Kristoffersen, K.J., Pedersen, C., Anderson, H.R.: Runtime verification of Timed
LTL using disjunctive normalized equation systems. In: Proceedings of the 3rd
International Workshop on Runtime Verification (2003)

11. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems.
Springer, Heidelberg (1992)

12. Sammapun, U., Lee, I., Sokolsky, O.: RT-MaC: Runtime monitoring and check-
ing of quantitative and probabilistic properties. In: Proceedings of the 11th IEEE
International Conference of Embedded and Real-Time Computing Systems and
Applications (2005)

13. Stolz, V., Bodden, E.: Temporal assertions using AspectJ. In: Proceedings of the
5th International Workshop on Runtime Verification (July 2005)

14. Titzer, B.L.: Avrora: The AVR simulation and analysis framework. Master’s thesis,
University of California, Los Angeles, June (2004)

15. Wald, A.: Sequential Analysis. In: Dover Phoenix Editions (2004)
16. Younes, H.L.S., Kwiatkowska, M., Norman, G., Parker, D.: Numerical vs. statisti-

cal probabilistic model checking: An empirical study. In: Proceedings of the 10th
International Conference on Tools and Algorithms for the Construction and Anal-
ysis of Systems (2004)

Temporal Assertions with Parametrised

Propositions�

Volker Stolz

United Nations University
Institute for Software Technology (UNU-IIST)

Abstract. We extend our previous approach to runtime verification of
a single finite path against a formula in Next-free Linear-Time Logic
(LTL) with free variables and quantification. The existing approach is
extended from event-based to set-based states, and the design-space of
quantification is discussed. By introducing a binary operator that binds
values based on the current state, we can dispense with the static analysis
of a formula. The binding semantics of propositions containing quantified
variables is simplified by a pure top-down evaluation. The alternating
binding automaton corresponding to a formula is evaluated in a breadth-
first manner, allowing us to instantly detect refuted formulae during
execution.

1 Introduction

In earlier work [15,6], we introduced a framework for runtime verification based
on LTL with parametrised propositions for the Java programming language.
AspectJ [10] pointcuts served as propositions of the logic and call into a runtime
checker implementing an alternating automaton for the desired LTL property.

In this article, we discuss the formal semantics of an alternative way of specify-
ing formulae with parametrised propositions that differentiates between binding
and using variables. A specific operator that binds parameters in propositions
simplifies the semantic check for well-formed formulae: a static analysis had to
assure that parameters would be indeed always bound in specific locations. Ad-
ditionally, we extend the system from event-based systems to set-based states
and discuss the meaning of quantification.

Many programs can benefit from runtime verification: semantic interfaces [6]
validate proper interaction in an object-based system, or trace properties trigger
some behaviour, as an extension to Aspect-oriented Programming techniques
where usually only single events are instrumented.

Events in program execution (method calls, specific instructions) can be used
as propositions in the runtime verification framework. Interesting properties over
traces usually relate resources, like processes, locks, or objects/object references

� Extended version published in [14]. Partially supported by the projects HighQSoftD
and HTTSS funded by the Macao Science and Technology Development Fund.

O. Sokolsky and S. Tasiran (Eds.): RV 2007, LNCS 4839, pp. 176–187, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Temporal Assertions with Parametrised Propositions 177

with each other, which ties together different propositions in the property speci-
fication. It proves problematic to specify the resources some property should be
checked on in dynamic systems: identifiers of newly created objects vary from
run to run of a program and can only be difficultly statically specified.

A different approach is specifying the behaviour (events) that makes some
resource “interesting” to the verifier, in the sense that it should check some
temporal property on its execution. Once such an event occurs, the pertinent
data, e.g. in the case of a method call, caller, callee and arguments are noted and
can be referred to by events occurring later on the trace. We have to encode the
following together with the property: which events we are interested in, what
values from the environment are relevant to the event, and whether we compare
those values with previously bound values or if they should be used for future
comparisons. Also, it proved practical to have a means of reasoning about any
bound values through predicates, e.g., comparing attributes of bound objects.

Another interesting feature for the specification language was a short-hand
notation to specify what should happen in the absence of an event, which im-
plies not having any variable bindings for evaluation of the remaining formula.
In the tool JLO [15], we used implicit quantification depending on the “parent”
temporal operator shadowing a proposition. Propositions inside a Finally were
existentially quantified, while those inside a Globally were universal. This se-
mantics short-cuts evaluation if the corresponding event was missing, which is
exactly the behaviour desired on finite traces: on the end of a trace, a Globally
formula should be satisfied, while a Finally should cause a refutation.

Most practically focused approaches only treat event-based system, where
at most one proposition holds in each state. Explicit quantification becomes
important when there is more than one, e.g., when actions occur truly concur-
rent and are not serialised. A proposition p(x1, . . . , xn) is used to enumerate the
matching instances of this pattern on the current state. Quantifiers attached to
the variables indicate whether all or any generated instances must also fulfill
the remainder of the formula. The domain for each variable should be based
on the current state. Alternative interpretations, like declaring the domain be-
forehand or accumulating all seen values for a variable are possible, but im-
practical: we would have to track many instances, or need the complete trace
beforehand [14].

We introduce the operator ·→, as in the presence of temporal operators it is
important to control instantiation. We found it hard to assign a meaning to the
benign looking G (open(x) → F close(x)) , (“every file opened must be closed”),
that expands into G (¬open(x) ∨ F close(x)) which seemingly enumerates all files
which are not being opened ; G (open(x) ∧ F close(x)) has similar drawbacks.

Outline. Firstly, we introduce the finite path semantics for next-free LTL with
parametrised propositions. Then, we discuss the on-the-fly evaluation of a trace
through an alternating automaton, augmented by bindings. This is illustrated
through an example. We conclude with a summary and related work.

178 V. Stolz

2 Parametrised LTL

Parametrised propositions in a formula consist of a constructor with a given
arity and the corresponding number of variables as arguments. In a state, the
arguments to the constructor are values from some fixed object domain. A state
defines a mapping of a parametrised proposition to a set of valuations for the
variables in a formula. When matching against a parametrised proposition which
contains quantified and bound variables, each unbound variable in the propo-
sition may get a value from the underlying domain. This mechanism is closely
related to unification in the Prolog system [12], although we only handle con-
stants, and not arbitrary terms.

Syntactically, we will enforce by construction that a quantifier is tied to the
proposition that binds valuations. In the remainder of the formula, the quantified
variables are only used but do not generate any new bindings.

The operators of pLTL formulae are virtually the same as in well-known
LTL. As propositions may contain variables, we must introduce quantification.
We permit quantifiers also inside subformulae shadowed by temporal operators
and limit ourselves to sentences, where every variable is quantified. Syntactically,
we restrict formulae to the form where quantifiers occur only together with a
positive proposition.

The introduction of a special operator makes it easier for us to specify and
enforce semantic constraints already on a syntactical level: a quantified existence
predicate is the left-hand side of a special non-commutative implication denoted
by ·→, where the right-hand side is another temporal formula.

As an example, consider the formula G ∃x : p(x) ·→ ψ(x), applied to the state
{p(1), p(2), q(3)}. We have to verify the formulae G p(1) ·→ ψ(1), G p(2) ·→ ψ(2)
starting from the current state, and the recurrent G ∃x : p(x) ·→ ψ(x) again
from the next state.

Definition 1. Let PN be a set of proposition names, where p ∈ PN (n) denotes
a constructor of arity n ∈ N. The set of all propositions P, given a fixed value
domain D and a set of variables V, is defined as:

P :=
⋃

n∈N

⋃

p∈PN (n)

{p(v1, . . . , vn) | vk ∈ D ∪ V , 1 ≤ k ≤ n}

The set of ground propositions P⊥ is the subset of all propositions where each
position is instantiated with an element of D, i.e., no position contains a variable:

P⊥ := {p(d1, . . . , dn) ∈ P | ∀i : di ∈ D, n ∈ N}

Definition 2. The set pLTL of parametrised LTL formulae over a set of vari-
ables V, a set of terms TΣ(V) composed of function symbols and variables, and

Temporal Assertions with Parametrised Propositions 179

a set of predicates PrN over terms, is defined by the following grammar where
quantified variables are propagated top-down:

pLTL ::= pLTL(∅)
pLTL(V ⊆ V) ::= tt | ff

| p(u1, . . . , un) ∈ P(n), u1, . . . , un ∈ V ∪ D (propositions)
| q(t1, . . . , tn), q ∈ PrN (n), t1, . . . , tn ∈ TΣ(V) (predicates)
| pLTL(V) ⊕ pLTL(V), ⊕ ∈ {U,R, ∨, ∧} (binary operators)
| ¬pLTL(V) (negation)
| Q1x1 . . . Qmxm : p(u1, . . . , un)

·→ pLTL(V ′),
∀i : xi ∈ V, ∃j : xi = uj , Qi ∈ {∀, ∃}, (quantification)
V ′ := V � {x1, . . . , xm}, ∀k : uk ∈ V ′ ∪ D

For clarity, quantifiers always use fresh variables, i.e., variables which are not
yet contained in V . We omit the implication and the right-hand side in the leaf
of a formula if it implies tt. Each quantified variable must occur at least once in
the existence predicate (left-hand side).
A formula Q1x1 . . . Qmxm : p(u1, . . . , un) ·→ ψ can be understood as:

There exists a set of valuations derived from the current state (depending
on the quantifiers) satisfying both p(u1, . . . , un) and ψ. If no such val-
uations exist, the outermost quantifier Q1 indicates whether evaluation
succeeds (universal quantification over empty domain) or fails (existen-
tial quantification).

We define the finite paths semantics for a pLTL formula over a set of variables
with respect to a given (partial) valuation (binding) β : V �→ D and a path
w = w[0] . . . w[n − 1] ∈ (2P⊥)n.

Definition 3. Let β̂ be the natural extension of β : U → D over pLTL propo-
sitions and formulae ϕ ∈ pLTL(V), U, V ⊂ V, bound(ϕ) ∩ U = ∅:

β̂ : pLTL(V) → pLTL(V)

β̂(p(v1, . . . , vm)) := p(u1, . . . , um), where

ui :=

�
β(vi), if vi ∈ V and β(vi) defined
vi, otherwise

β̂(tt) := tt, β̂(ff) = ff
β̂(¬ϕ) := ¬β̂(ϕ)

β̂(Q1x1 . . . Qmxm : p(u1, . . . , un)
·→ ψ) := Q1x1 . . . Qmxm : β̂(p(u1, . . . , un))

·→ β̂(ψ)

β̂(F ϕ) := F β̂(ϕ), β̂(G ϕ) := G β̂(ϕ)

β̂(ϕ ⊕ ψ) := β̂(ϕ) ⊕ β̂(ψ), ⊕ ∈ {R,U, ∧, ∨} (binary operators)

We use β∅ to denote the empty valuation which does not assign a value to
any variable. When representing valuations in the text, we will use a set of
tuples consisting of variable/value pairs, for example, {x/3, y/4}, resembling the
function that maps x to 3 and y to 4.

180 V. Stolz

Definition 4. The � operator specialises a valuation. We use it in an environ-
ment where the two bindings are disjoint and one binding extends another.

 : (V �→ D) × (V �→ D) → (V �→ D)

β2 β1 := λx.

�
β1(x), if x ∈ V bound in β1

β2(x), otherwise

Definition 5. Given a parametrised proposition p(u1, . . . , un) ∈ P and a state
a ∈ 2P⊥ , we obtain all possible valuations for a variable x ∈ {u1, . . . , un}:

vals : P × 2P⊥ × V → 2D

vals(p(u1, . . . , un), a, x) := {d ∈ D | ∃p(d1, . . . , dn) ∈ a :

({̂x/d})(p(u1, . . . , un)) ↓ p(d1, . . . , dn)}

where ↓: P × P → B indicates whether two parametrised propositions are unifi-
able, i.e., there exist substitutions for all variables occurring in them such that
both propositions are identical under these substitutions.

Definition 6 (Finite path semantics). We define the finite path satisfaction
relation (w[j], β) |= ϕ for a non-empty path w = w[0] . . . w[n − 1] ∈ (2P⊥)n, 0 ≤ j <

n, β : V �→ D, an interpretation for predicates with free(q(β(t1), . . . , β(tn))) = ∅, a
formula ϕ ∈ pLTL(V), V ⊂ V by induction on the structure of ϕ.

(w[j], β) |= tt, (w[j], β) �|= ff ,
|= p(u1, . . . , um) iff β̂(p(u1, . . . , um)) ∈ w[j],
|= q(t1, . . . , tn) iff [[q(β(t1), . . . , β(tn))]] = tt
|= ¬ϕ iff w[j] �|= ϕ
|= ϕ U ψ iff ∃k (j ≤ k < n) s.th. (w[k], β) |= ψ

∧ ∀l (j ≤ l < k) → (w[l], β) |= ϕ
|= ϕ R ψ iff ∀k (j ≤ k < n) → (w[k], β) |= ψ

∨ ∃l (j ≤ l < k) s.th. (w[l], β) |= ϕ
|= ϕ ⊕ ψ iff (w[j], β) |= ϕ ⊕ (w[j], β) |= ψ,⊕ ∈ {∨, ∧}

In the presence of existence predicates with quantifiers, we first derive the set of
all possible valuations for each variable and are obliged to prove the remaining
formula with respect to these bindings. We need to be aware that quantification
over an empty set D′ results in either ff or tt, depending on the quantifier. This
is achieved through the disjunctive normal form (DNF), where we calculate the
set of sets of valuations, where for at least one item in the outer set, all valuations
of the inner set must satisfy the formula on the remaining path:

(w[j], β) |= Q1x1 . . . Qkxk : p(u1, . . . , um)
·→ ψ, iff

�
θ∈Θ

�
σ∈θ

(w[j], σ β) |= (w[j], σ β) |= ψ, with

Θ = spec(β, w[j], Q1x1 . . . Qkxk : p(u1, . . . , um)), where

spec : (V �→ D) × 2P⊥ × pLTL(V) → 22V�→D

spec(β, w[j], Q1x1 . . . Qkxk : p(u1, . . . , um))

Temporal Assertions with Parametrised Propositions 181

:= valid(valsx1
⊗1 (. . . (valsxk ⊗k {{β∅}}) . . .)),

or {{β∅}} if k = 0 (no quantifiers)

valsxi := vals(β̂(p(u1, . . . , um)), w[j], xi)

⊗i : 2D × 22V�→D
→ 22V�→D

D ⊗i Θ′ :=

������
�����

�
θ′∈Θ′

� �
σ′∈θ′

{ {xi/d} σ′}
					 d ∈ D

, if Qi = ∃

�
d∈D

��
{ {xi/d} σ′ | σ′ ∈ θ′}

		 θ′ ∈ Θ′ , if Qi = ∀

with
�

{Θ1, . . . , Θn} := Θ1 ⊗ . . . ⊗ Θn, where

S ⊗ T := {s ∪ t | s ∈ S, t ∈ T}, and

valid(Ω) :=
�

{σ | σ ∈ θ, (σ̂ β)(p(d1, . . . , dm)) ∈ w[j]}
			 θ ∈ Ω

�
The above calculation of spec is thus the extension of the vals function (Def. 5)
to multiple quantifiers. Observe that although β is passed in to the function,
the resulting valuations are calculated modulo the pre-existing binding. Old and
new bindings are composed through the expression σ � β in the consumer. The
right-hand side of the existence-predicate passed into the evaluation of spec takes
no part in the result and is therefore omitted where convenient.

An existentially quantified variable x will create |valsx| times the number of
disjoint valuations new outer sets, while universal quantification has the same
effect on each inner (conjoined) valuation, leaving the number of disjoint sets
unmodified. We define two shorthands for convenience:

(w, β) |= ϕ :⇐⇒ (w[0], β) |= ϕ.

A path is a model for a pLTL formula, if the formula can be proved for the
initially empty valuation β∅:

w |= ϕ :⇐⇒ (w, β∅) |= ϕ.

The following theorem allows us to either accumulate substitutions during eval-
uation or apply them to a formula.

Theorem 1. For all non-empty paths w ∈ (2P⊥)+, ϕ ∈ pLTL, and valuations
β : V �→ D it holds that:

(w, β) |= ϕ ⇐⇒ (w, β∅) |= β̂(ϕ) ⇐⇒ w |= β̂(ϕ).

From the declarative semantics it follows that partially instantiated propositions
never satisfy any state.

3 Parametrised Automaton

In the spirit of the well-known alternating automaton construction that accepts
the same language as its respective LTL formula [16], we give an on-the-fly con-
struction of the parametrised automaton, where each instantiation of quantified

182 V. Stolz

variables specialises the sub-automaton corresponding to the right-hand side of
the newly introduced binding expressions.

Definition 7. Let cl : pLTL → 2pLTL(V) for V = bound(φ) denote the closure
of a normalized formula, where negation is pushed down into the leaves through
recursive application of the ()+ operation following DeMorgan and the respective
rules for temporal operators, using the following rewriting rule for quantification:

¬ Q1x1 . . . Qnxn : p(y1, . . . , ym)
·→ ψ

−→ Q1x1 . . . Qnxn : p(y1, . . . , ym)
·→ (¬ ψ)+ . Then:

– φ ∈ cl(φ), tt,ff ∈ cl(φ)
– if ϕ ⊕ ψ ∈ cl(φ) then ϕ, ψ ∈ cl(φ), ⊕ ∈ {∨, ∧,R,U}
– if Q1x1 . . . Qnxn : p(u1, . . . , um)

·→ ψ ∈ cl(φ) then ψ ∈ cl(φ)

Contrary to fully instantiated propositions, the quantified left-hand side of a
binding expression is not an explicit state in the construction since it is not a
syntactically valid sub-formula.

Definition 8 (Parametrised automaton). The parametrised automaton of
a pLTL formula φ in positive form is a quintuple A(φ) := 〈2P⊥ , Q, q0, δ, F 〉 which
behaves like a normal alternating finite automaton, but additionally, it passes
bindings along through the transition function and is able to augment them when
taking a transition from a state whose label is prefixed with an existence predicate:

δ : (Q × [V �→ D]) × Σ → 22(Q×[V�→D])

The states of the automaton are the elements of the closure of the corresponding
pLTL formula φ in positive form augmented by the binding function; the final
states are the tt state and all Release nodes:

Q := cl(φ) × [V �→ D], q0 := (φ, β∅)
F := ({tt} ∪ {q ∈ cl(φ) | q = ϕ R ψ}) × [V �→ D]

We statically determine the parametrised, static structure, and explore it through
instantiation on the fly. The binding function now carries the burden of dynam-
ically tracking the valuations. The transition function is defined through:

δ((tt, β), a) := {∅}, δ((ff , β), a) := ∅

Propositions:

δ((p(u), β), a) :=

�
{{(tt, β)}}, iff β̂(p(u)) ∈ a

{{(ff , β)}}, otherwise

δ((¬p(u), β), a) :=

�
{{(tt, β)}}, iff β̂(p(u)) �∈ a, free(β̂(p(u))) = ∅
{{(ff , β)}}, otherwise

Predicates:

δ((q(u), β), a) :=

�
{∅}, iff [[β̂(q(u))]] = tt
∅, otherwise

δ((¬q(u), β), a) :=

�
{∅}, iff [[β̂(q(u))]] = ff
∅, otherwise

δ((ϕ ∨ ψ, β), a) := δ((ϕ, β), a) ∪ δ((ψ, β), a)
δ((ϕ ∧ ψ, β), a) := δ((ϕ, β), a) ⊗ δ((ψ,β), a)
δ((ϕ U ψ, β), a) := δ((ψ, β), a) ∪ ({{(ϕ U ψ, β)}} ⊗ δ((ϕ, β), a))
δ((ϕ R ψ, β), a) := (δ((ϕ, β), a) ⊗ δ((ψ,β), a)) ∪ ({{(ϕ R ψ, β)}} ⊗ δ((ψ,β), a))

Temporal Assertions with Parametrised Propositions 183

We only modify the bindings on states prefixed with an existence predicate. For
correct behaviour with respect to universal quantification over an empty domain
we introduce a separate short-cut rules. We only have to consider the first quan-
tifier, as due to the definition of spec, it is not possible to have valuations for
some of the quantified variables in the same parametrised proposition but not
for others. Existential quantification coincides with the general case as Θ will be
empty, thus producing no successor states.

δ((Q1x1 . . . Qnxn : p(u1, . . . , um)
·→ ψ, β), a)

:=

��
�

{∅}, iff Q1 = ∀ and Θ = ∅�
θ∈Θ

� �
{δ((ψ,σ β), a) | σ ∈ θ}

�
,

Θ := spec(β, a, Q1x1 . . . Qnxn : p(u1, . . . , um))

A run of the parametrised automaton is a tree where nodes are labelled with
tuples from (Q × [V �→ D]). The run is accepting, if all leaves are labelled with
tuples where the state component is in F . Note that each leaf may be labelled
with a different binding function. The incremental nature of the bindings is still
visible in the tree: the valuation of a child node is always at least as specific (in
the sense that it binds at least as many variables) as its parent.

Theorem 2. For a path w, a pLTL formula φ and the corresponding parame-
trised automaton A(φ) it holds that: φ ≡ A(φ).

Again, we refer the interested reader to [14] for the proof.

Size of the Construction. The static size of the automaton which abstracts
from a concrete binding is linear in the size of the formula. At runtime, in the
worst case we observe |cl(φ)| × |D||V | states (exponential in the number of vari-
ables, since each state can be replicated once for each instantiation of its free
variables). In practice, this places the burden on the user to keep the number of
expected/possible instantiations in mind when devising a formula. For example,
although she could match on object creation through new() and later match on
a specific event with the bound value, there is no added value in that: a matching
directly on the event for instantiating any parameters should produce exactly
the necessary bindings (unless of course it is essential for the behaviour to be
observed to have a new-event). Evaluating a run of an instantiated alternat-
ing automaton has an additional double-exponential overhead (from alternating
automaton to non-deterministic, and then to deterministic automaton).

However, we found in [15] that non-discriminate instrumentation is the most
limiting factor. For improvements on instrumenting, e.g., Java, applications for
runtime verification, we refer the reader to [5].

3.1 Example: Lock-Order Reversal

As an example for a refutation, we shall consider an actual concurrent program-
ming problem we reported in [13]: to avoid the problem of Lock-order Reversal

184 V. Stolz

class Main

method main
var lockA lockB

lockA := (Lock) new ()
lockB := (Lock) new ()
thread this . take (lockA , lockB)
this . take (lockB , lockA)

method take (l1 , l 2)

L1 : lock l 1
lock l 2
/∗ c r i t i c a l s e c t i on ∗/
unlock l 2
unlock l 1
jmp L1

Fig. 1. Sample code exhibiting potential Lock-order Reversal

(LOR) (see also [9,4]), we would like to assert through an LTL formula that if
two locks are taken in a given order (with no unlocking in between), the system
should warn the user if he also uses these locks in swapped order because in
concurrent programs this would mean that two threads could deadlock when
their execution is scheduled in an unfortunate order.

The trace data we are interested in are the lock and unlock operations. We
need both the information as to which lock is affected and which thread is taking
the action and assume a trace of the corresponding propositions.

The pseudo-program in Fig. 1 generates a trace containing the above propo-
sitions, possibly in the order indicating the erroneous behaviour. We can detect
this and warn the developer that his application has the potential to enter a
deadlock under certain conditions.

Thus, if we consider a class Lock with explicit lock and unlock methods like
we might find them in any programming language, we obtain for two threads
ti, tj and two locks lx, ly the following formula, where we assign names to the
different subformulae and push down negation (the Globally operator is just a
short-hand for ff R φ):

Ψ := G [∀ti∀lx : lock(ti, lx)
·→ (ϕR(ti, lx) ∨ ϕU(ti, lx))]

ϕR(ti, lx) := unlock(ti, lx) R ∀lz′ : lock(ti, lz′)
·→ ¬(lz′ �= lx)

ϕU(ti, lx) := ¬unlock(ti, lx) U ∃lz : lock(ti, lz)
·→ [lz �= lx

∧ ∀ly : lock(ti, ly)
·→ (ly �= lx ∧ ϕ′(ti, lx, ly))]

ϕ′(ti, lx, ly) := G ∀tj : lock(tj , ly)
·→ [¬(ti �= tj) ∨ ϕ′′(ti, tj , lx, ly)]

ϕ′′(ti, tj , lx, ly) := unlock(tj , ly) R ¬lock(tj , lx)

The variable lz is necessary because there cannot be any information transfer from
the right-hand side of an Until to any “subsequent” formula in pLTL. This is also
a main difference from J-LO where valuations can spill over from one side to the
other of a binary operator, making evaluation more problematic. We use an im-
plication to rebind the same event, but now to the proposition with the variable
ly. For this formula, ∃lz : lock(ti , lz) and ∀ly : lock(ti , ly) will always coincide.

The constraints on the identifiers are predicates, which are moved immedi-
ately after the respective event which will cause the variables mentioned in the
constraint to become fully instantiated. Ψ , ϕR, ϕ′, and ϕ′′ are accepting states of
the automaton at the end of the trace, while ϕU is not. Fig. 2 gives the schematic

Temporal Assertions with Parametrised Propositions 185

Ψ

ϕR

∀ti∀lx : lock(ti, lx)

tt

unlock(ti, lx)

ϕU
∀ti∀lx : lock(ti, lx)

ϕ′

∀ly : lock(ti, ly)

ϕ′′

∀tj : lock(tj , ly)

tt

unlock(tj , ly)

tt tt

∀lz′ : lock(ti, lz′)

tt

¬unlock(ti, lx)

¬lock(tj , lx)

Fig. 2. Schematic automaton for Lock-order Reversal

structure of the corresponding automaton. Multiple edges leaving a single proper
node are disjuncts, while conjuncts are indicated using the intermediate small
nodes. Labels on edges indicate input symbols or instantiation of parametrised
propositions for the corresponding sub-automaton. tt indicates an edge that is
taken under any input. Dashed edges are used during intermediate construction
and indicate that the current input symbol is re-used in the sub-automaton: the
right-hand side of a parametrised expression must be evaluated under the cur-
rent input, using the instantiations obtained by the left-hand side. The sequence
of events that we assume is:

Step 1 2 3 4 5

Thread 1: lock(t1, lA); lock(t1, lB); unlock(t1, lB);

Thread 2: lock(t2, lB); lock(t2, lA)

We obtain the following intermediate configurations in DNF, starting from the
initial configuration s0:

s0 = {{(Ψ, β∅)}}
s1 = {{(Ψ, β∅), (ϕ

R, {ti/1, lx/A})},
{(Ψ, β∅), (ϕ

U, {ti/1, lx/A})}}
s2 = {{(Ψ, β∅), (ϕ

R, {ti/1, lx/B}), (ϕ′, {ti/1, lx/A, ly/B})},
{(Ψ, β∅), (ϕ

U, {ti/1, lx/B}), (ϕ′, {ti/1, lx/A, ly/B})}}
s3 = {{(Ψ, β∅), (ϕ

′, {ti/1, lx/A, ly/B})}}
s4 = {{(Ψ, β∅), (ϕ

R, {ti/2, lx/B}), (ϕ′, {ti/1, lx/A, ly/B}), (ϕ′′, {ti/1, tj/2, lx/A, ly/B})}}
{(Ψ, β∅), (ϕ

U, {ti/2, lx/B}), (ϕ′, {ti/1, lx/A, ly/B}), (ϕ′′, {ti/1, tj/2, lx/A, ly/B})}}
s5 = ∅

186 V. Stolz

The last state refutes the formula, as an empty set of disjunctions is unsatisfiable,
i.e., the trace does not satisfy the formula. We note that each prefix of this trace
would be accepted, as in each configuration, there is always at least one disjunct
consisting only of accepting states.

4 Conclusion

In this article we have presented an extension of well-known finite path LTL
and extended the semantics with an explicit binding operator for parametrised
propositions. This makes the decision on when exactly to derive valuations from
the trace explicit. We also illustrated how to translate pLTL formulae into a
variant of alternating automata which gives us a means of checking a path.
A short example illustrates the application, although it is certainly arguable
whether LTL is an appropriate language for specifying real-world properties. A
short comparison with related work is provided.

Related Work. The rule-based frameworks Eagle [3] and RuleR [2] are very
similar, but more flexible: our ·→ operator resembles a rule. Temporal logics can
be encoded through rules. Eagle also allows data parametrization.

Walker and Viggers [17] proposed a language extension to AspectJ, tracecuts.
Tracecuts match on sequences of events in the execution flow and are specified
by means of context-free expressions over Java pointcut, but do not provide au-
tomatic tracking of state through parametrization. Allan et al. [1] extended the
abc compiler with tracematches which allow to bind free variables in pointcut ex-
pressions. Free variables are only available in the symbol declaration, so the trace
match itself is not parametrised and may require duplicate symbol definitions
under renaming (e.g. lockA1,lockA2,lockB1,lockB2 instead of lock(x,y)).
Douence et al. [7] discussed regular trace-based aspects with variables. The Pro-
gram Query Language [11] allows for both static and dynamic analysis of Java
programs and permits matching context-free patterns.

Finkbeiner et al. proposed algebraic alternating automata [8] which collect
statistics over runtime executions. It allows to evaluate queries over finite traces
like “what is the average number of retransmissions” or “what is the maximum
packet delay”. Basic observations on the trace constitute experiments, which
are then aggregated with the help of algebraic alternating automata. Each sym-
bol in a formula gets an additional function corresponding to its arity, that is,
propositions and the X operator carry a unary function, Boolean functions ∨, ∧,
and U a binary function. These functions are used to combine results from both
branches. Similarly, for aggregate statistics interval and unconditional collection
can be used to compute, for example, the maximum number of times that a
predicate holds in a specific interval. The collection mechanism of this frame-
work could surely be used to “accumulate” the variable bindings used in our
approach instead of some statistics, but the overall result does not influence the
acceptance condition of the automaton, as our mechanism does.

Acknowledgement. The author thanks Eric Bodden for his work in [15,6].

Temporal Assertions with Parametrised Propositions 187

References

1. Allan, C., Avgustinov, P., Simon, A.S., Hendren, L., Kuzins, S., Lhoták, O., de
Moor, O., Sereni, D., Sittamplan, G., Tibble, J.: Adding Trace Matching with
Free Variables to AspectJ. In: OOPSLA 2005 (2005)

2. Barrigner, H., Rydeheard, D., Havelund, K.: Rule systems for run-time monitoring:
from EAGLE to RULER. In: Sokolsky, O., Tasiran, S. (eds.) RV 2007. LNCS,
vol. 4128, pp. 188–201. Springer, Heidelberg (2007)

3. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based runtime verifi-
cation. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, Springer,
Heidelberg (2004)

4. Bensalem, S., Havelund, K.: Dynamic deadlock analysis of multi-threaded pro-
grams. In: Ur, S., Bin, E., Wolfsthal, Y. (eds.) Hardware and Software, Verification
and Testing. LNCS, vol. 3875, Springer, Heidelberg (2006)

5. Bodden, E., Hendren, L., Lhoták, O.: A staged static program analysis to improve
the performance of runtime monitoring. In: Ernst, E. (ed.) ECOOP 2007. LNCS,
vol. 4609, Springer, Heidelberg (2007)

6. Bodden, E., Stolz, V.: Tracechecks: Defining semantic interfaces with temporal
logic. In: Löwe, W., Südholt, M. (eds.) SC 2006. LNCS, vol. 4089, Springer, Hei-
delberg (2006)

7. Douence, R., Fradet, P., Südholt, M.: Composition, reuse and interaction analysis
of stateful aspects. In: Murphy, G.C., Lieberherr, K.J. (eds.) Proc. of the 3rd Intl.
Conf. on Aspect-oriented software development (AOSD 2004). ACM (2004)

8. Finkbeiner, B., Sankaranarayanan, S., Sipma, H.: Collecting statistics over runtime
executions. In: Havelund, K., Roşu, G. (eds.) Semantics of Concurrent Computa-
tion. ENTCS, vol. 70, Elsevier, Amsterdam (2002)

9. Havelund, K.: Using Runtime Analysis to Guide Model Checking of Java Programs.
In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN Model Checking and Software
Verification. LNCS, vol. 1885, Springer, Heidelberg (2000)

10. Laddad, R.: AspectJ in Action: Practical Aspect-Oriented Programming. Manning
Publications Co. (2003)

11. Martin, M., Livshits, B., Lam, M.S.: Finding application errors and security flaws
using PQL: a program query language. In: OOPSLA 2005 (2005)

12. Sterling, L., Shapiro, E.: The Art of Prolog. MIT Press, Cambridge (1986)
13. Stolz, V., Huch, F.: Runtime Verification of Concurrent Haskell Programms. In:

Havelund, K., Roşu, G. (eds.) Stochastic Automata: Stability, Nondeterminism and
Prediction, vol. 113, Elsevier, Amsterdam (2005)

14. Stolz, V.: Temporal assertions for sequential and concurrent programs. Technical
Report AIB-2007-15, RWTH Aachen University, August 2007. PhD thesis(2007),
http://aib.informatik.rwth-aachen.de/2007/2007-15.pdf

15. Stolz, V., Bodden, E.: Temporal Assertions using AspectJ. In: Barringer, H.,
Finkbeiner, B., Gurevich, Y., Sipma, H. (eds.) ISSAC 1982 and EUROCAM 1982.
ENTCS, vol. 144, Elsevier, Amsterdam (2005)

16. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller,
F., Birtwistle, G. (eds.) Logics for Concurrency: Structure versus Automata. LNCS,
vol. 1043, Springer, Heidelberg (1996)

17. Walker, R.J., Viggers, K.: Implementing protocols via declarative event patterns.
In: Taylor, R.N., Dwyer, M.B. (eds.) Proc. of the 12th ACM SIGSOFT Intl. Symp.
on Foundations of Software Engineering, ACM Press, New York (2004)

http://aib.informatik.rwth-aachen.de/2007/2007-15.pdf

Rollback Atomicity

Serdar Tasiran and Tayfun Elmas

Koc University, Istanbul, Turkey

Abstract. We introduce a new non-interference criterion for concurrent
programs: rollback atomicity. Similarly to other definitions of atomicity,
rollback atomicity of a given concurrent execution requires that there
be a matching serial execution. Rollback atomicity differs from other
definitions of atomicity in two key regards. First, it is formulated as a
special case of view refinement. As such, it requires a correspondence
between the states of a concurrent and a serial execution for each atomic
block rather than only at quiescent states. Second, it designates a subset
of shared variables as peripheral and has more relaxed requirements for
peripheral variables than previous non-interference criteria.

In this paper, we provide the motivation for rollback atomicity. We
formally define it and compare it with other notions of atomicity and
non-interference criteria. We built a runtime checker for rollback atomic-
ity integrated into the refinement checking tool, VYRD. This implemen-
tation was able to verify that concurrent executions of our motivating
example are rollback atomic.

1 Introduction

Shared-memory multi-threaded programs are prone to concurrency-related bugs.
In addition to program-specific correctness properties, several generic correctness
and non-interference criteria have been studied for such programs, including
freedom from race conditions and deadlocks. Such generic criteria provide a
separation of concerns. By first verifying or trying to ensure that his program
does not violate a generic correctness criterion, a programmer can then make
certain assumptions and simplify his reasoning while ensuring other properties
of the program. For instance, for Java programs, ensuring race freedom allows
the programmer to assume sequential consistency for his program [9].

A higher-level correctness criterion that is frequently used is atomicity. Pro-
grammers designate blocks of their code atomic and would like to have certain
mutual-exclusion and non-interference guarantees about such blocks. A program-
mer may ensure the atomicity of code blocks himself using synchronization con-
structs provided by the platform he is working on, or he may use a transactional
memory implementation to ensure atomicity [8]. Several different variations of
atomicity have been defined and investigated in the literature. In this study, we
propose and investigate a new notion of atomicity called rollback atomicity that
addresses certain limitations of existing definitions of atomicity.

O. Sokolsky and S. Tasiran (Eds.): RV 2007, LNCS 4839, pp. 188–201, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Rollback Atomicity 189

Definitions of atomicity have the following general form:

Definition 1 (Atomicity). A concurrent execution σconc of a program is atomic
iff there exists an equivalent, serial execution σser in which actions of each atomic
block are executed consecutively.

Rollback atomicity follows this template as well. Rollback atomicity requires a
particular kind of match between the states of σconc and the witness execution
σser at certain points in each execution. These points approximately correspond
to completion points of atomic blocks. A subset F of the shared data variables is
designated by the user as the set of focus variables. The rest of the shared vari-
ables (the set P) are called peripheral variables. The valuation of focus variables
in σser right after an atomic block A completes is required to match a valuation
obtained from σconc by (i) considering the program state at the point where A
completes in σconc and (ii) by “rolling back” the effects of other atomic blocks B
that commit later, i.e. appear later than A in σser . Rollback atomicity is defined
precisely in Section 3.

Different notions of atomicity in the literature differ in their formalization
of the equivalence of executions that they use to interpret the Definition 1.
Reduction and its variants [2,12] are defined based on actions that are left-,
right- and both-movers and actions that are non-movers. Reduction requires that
it be possible to obtain σser from σconc by swapping actions that commute for
σser and σconc to be equivalent. Conflict serializability (See e.g. [10,12]) requires
σser to consist of the same accesses as in σconc and for the order of accesses to
each variable to be the same in the two executions. View serializability [10,12]
is a more relaxed notion for atomicity. It requires that σser consist of the same
accesses as in σconc , that the final write to each variable in both executions be
the same and that the write seen by each read be the same in both executions.
Commit atomicity [4] requires that the order of the atomic blocks in σser be the
same as the order of occurrence of their commit points in σconc . All quiescent
states, i.e., states in which no atomic block is in progress, including the final
state of σconc are then required to match corresponding states of σser . Rollback
atomicity is a weaker requirement than reduction and conflict serializability, but
is incomparable with view serializability and commit-atomicity. It provides more
observability at more points along the execution and is therefore more stringent
than the latter two criteria, but is more permissive and abstract than them in
other regards.

In Section 2.1, we provide an example which we use to motivate and illustrate
various aspects of rollback atomicity. In Section 2.2, we review existing non-
interference criteria for concurrent programs and provide examples where they
produce counterintuitive results. In some of these examples, existing criteria
are too restrictive. In others, they miss errors when applied in the context of
runtime verification because they only pose a requirement about the end states
of executions. We propose the novel criterion of rollback atomicity to address
some of these issues. In Section 3, we define rollback atomicity formally. Section 4
describes our runtime algorithm for checking whether a concurrent execution of

190 S. Tasiran and T. Elmas

a Java program is rollback atomic. Section 5 describes our implementation and
presents preliminary results.

2 Motivation

2.1 Rollback Atomicity Example

In this example, several concurrent threads can each run the send method of
a different Msg object (See Figures 1 and 2). The Msg objects that are to be
sent wait in a queue called toSendQueue, thus, toSendQueue is shared among
different threads. The static field Msg.KBSentThisSec and the pool of bytes to
be sent, SendPool are also shared among threads. Each Msg object has a boolean
field sent that indicates whether or not it has been copied into SendPool. The
send method copies the contents of the message (a byte array) to SendPool
byte by byte. In SendPool, each byte has a message identifier (shown by msg1,
etc. in the leftmost box representing each message in Figure 1) and a sequence
number. The programmer wants the modifications of the sent fields and the
toSendQueue to be atomic. While the sentPool data structure is also a shared
variable, since the network can already re-order messages, it is not necessary for
the sequence of updates to sentPool by each send method to be atomic. The
KBytesSentThisSec static field is shared (read and written to) by all threads.
It is used for rate control and occasionally causes a send method to abort,
but otherwise, in non-exceptionally-terminating executions of send, it does not
affect the functionality of the method. This field is reset every second, and is
incremented by all threads manipulating Msg objects. The user does not need the
complete sequence of updates to the KBytesSentThisSec field within a single
execution of send to be atomic. Also, the fact that, of two concurrent executions
of send, one writes to KBytesSentThisSecwhile the other one reads the written
value does not point to a true data dependency between the two executions of
send. KBytesSentThisSec is simply there for rate control.

msg1

msg2

msg3

ToSendQueue

SendPool
0 1 2 3 4

0 1 2 3

0 1 2 3 4 5 6 7

msg1 0

msg3 1

msg2 1

msg1 1

Thread 1

Thread 2

Th
re
ad

3

contents

Fig. 1. Concurrent threads and objects in Example 1

Rollback Atomicity 191

0: class Msg {
1: long msgId; /* @Focus */
2: static long KBSentThisSec = 0; /* @Peripheral */
3: boolean sent = false; /* @Focus */
4: byte[] contents; /* @Focus */
5:
6: static synchronized long getKBSentThisSecIncr() {
7: return ++KBSentThisSec;
8: }
9:
10: static synchronized long getKBSentThisSec() {
11: return KBSentThisSec;
12: }
13:
14: synchronized atomic void send() {
15:
16: if (sent || !toSendQueue.isIn(this))
17: abort; // Caller must retry
18:
19: if (Msg.getKBSentThisSec() > MAX_RATE)
20: abort; // Caller must retry
21:
22: int i = 0;
23: while (i < contents.length) {
24:
25: sendPool.insert(msgId, i, content[i]);
26: if ((++i % 1000) == 0)
27: if (Msg.getKBSentThisSecIncr() > MAX_RATE)
28: abort; // Caller must retry
29: }
30:
31: sent = true;
32: toSendQueue.remove(this);
33: } //Commit point
34: }

Fig. 2. Example 1: Focus variables and rollback atomicity

Consider two normally-terminating (i.e., without executing abort()) concur-
rent executions of send for Msg objects msg1 and msg2. Consider the interleaving
of actions by two threads (Figure 3) where an increment that msg2.send() be-
ing run by thread T2 performs on Msg.KBytesSentThisSec occurs between two
updates to the same static field by msg1.send() running on thread T1. Here,
the increment of the static field Msg.KBytesSentThisSec is split into three ac-
tions (read-modify-write) to emphasize the read-write data dependencies be-
tween consecutive increments to this field. These dependencies are important
when considering which re-orderings are allowed by different non-interference
criteria.

192 S. Tasiran and T. Elmas

T1 T2
-- --
send 1000 Bytes of msg1
tmp1 = Msg.KBytesSentThisSec
tmp1 = tmp1 + 1
Msg.KBytesSentThisSec = tmp1

send 1000 Bytes of msg2
tmp2 = Msg.KBytesSentThisSec
tmp2 = tmp2 + 1
Msg.KBytesSentThisSec = tmp2

send 1000 Bytes of msg1
tmp1 = Msg.KBytesSentThisSec
tmp1 = tmp1 + 1
Msg.KBytesSentThisSec = tmp1

Fig. 3. A possible interleaving of actions in Example 1

Conflict serializability does not allow the reads and writes to Msg.KBytes-
SentThisSec by msg1.send() and msg2.send() to be re-ordered in order to ob-
tain a witness serial execution. Likewise, view serializability does not allow such
a re-ordering either, as it requires that the value of Msg.KBytesSentThisSec
seen by each read (results of which are written to local variables tmp1 and tmp2)
to be the same in the concurrent and serial executions. Therefore, these two
criteria declare such an execution unserializable.

Consider an interleaving of actions from threads in which a message is not
sent during a period because MAX RATE is exceeded. For such an execution, at
the end of the one-second period, the value of Msg.KBytesSentThisSec does
not match the value of Msg.KBytesSentThisSec that would have been obtained
at the end of any serial execution consisting of only the successful executions of
send. Thus, such an execution would constitute a commit atomicity violation [4]
as well.

However, this execution is consistent with the designer’s intentions and is
atomic in a certain sense. If only accesses to the shared variables toSendQueue,
contents and Msg.sent are considered, these concurrent executions can be seri-
alized in the order that msg1 and msg2 are removed from toSendQueue. Declaring
toSendQueue, contents and Msg.sent as the set of our focus variables while
designating the rest of the shared variables as peripheral variables, rollback
atomicity provides us a way of expressing the requirement that toSendQueue,
contents and sent be updated atomically by each execution of send while
Msg.KBytesSentThisSec only have a consistent value that allows these execu-
tions to complete normally.

2.2 Limitations of Other Non-interference Criteria

Formalizations of atomicity in the literature differ mainly in the notion of equiv-
alence of serial and concurrent executions they use. This section presents a series

Rollback Atomicity 193

T1 T2
-- --

atomic {
atomic { acq(Lock_Z, Lock_Y)

read Z
write Z
rel(Lock_Z)

acq(Lock_Z)
read Z
write Z
acq(Lock_X)
read X
rel(Lock_Z)
rel(Lock_X)

acq(Lock_X)
read X
rel(Lock_X)
write Y
rel(Lock_Y)

} // end atomic
} // end atomic

Fig. 4. Demonstrating restrictiveness of reduction. The vertical axis represents time.

of scenarios where previous non-interference criteria are too restrictive or per-
missive in the context of runtime verification.

Reduction and its variants ([2,12]) are defined based on actions that are left-,
right- and both-movers and actions that are non-movers. They require that it be
possible to obtain σser from σconc by swapping actions that commute. Reduction-
based definitions have the advantage that it is possible to develop type and
effect systems based on them that guarantee atomicity statically. Furthermore,
at runtime, it is possible to efficiently check sufficient conditions for atomicity
formulated based on whether the accesses within an atomic block adhere to
a certain pattern. However, reduction by itself is too restrictive. For instance,
acquiring and releasing a lock are right and left movers only. As a result, it is
not even possible to re-order the two independent reads. Consider the execution
fragment in Figure 4 and suppose that the atomic block in T2 must be serialized
first because of the reads and writes to Z (e.g. because of a conditional statement
in the original program). Intuitively, since the ordering of two lock-protected
reads of X can be changed while preserving all thread-local and global assertions
at any point in the execution it should be possible to commute all actions in T2
so they occur before all actions of T1 but reduction does not allow this.

Conflict serializability requires that σser consist of the same accesses as in
σconc and that the order of accesses to each variable remain the same. One
can formulate a necessary and sufficient check for conflict serializability of an
execution based on whether the graph of ordering dependencies between atomic
blocks in the execution is acyclic [12]. While it can be checked efficiently, and

194 S. Tasiran and T. Elmas

T1 T2
-- --
atomic {
write X

atomic {
read Y
write X

} // end atomic
read Y
write X

} // end atomic

Fig. 5. Example demonstrating restrictiveness of conflict serializability

is more permissive than reduction (e.g. it allows the two lock-protected reads
in Figure 4 to be commuted) conflict serializability is still often regarded as too
restrictive. For instance, in the execution in Figure 5, the first write to X by T1
cannot be commuted after the accesses by T2although no read in this execution
sees the first write to X by T1.

Given that multi-processing and multi-threading is becoming more common-
place, one would like to define a notion of atomicity that is as relaxed as possi-
ble while still enabling the programmer to reason in a sequential manner about
atomic blocks. View serializability is a more relaxed notion for atomicity. It re-
quires that σser consist of the same accesses as in σconc , that the final write
to each variable in both executions be the same, and that the write seen by
each read be the same in both executions. But there are scenarios in which view
serializability is more permissive than desired, and other scenarios in which it

T1 T2
------ ------

1: atomic {
2: X = 1 atomic {
3: X = 2
4: Y = 1
5: }// end atomic
6: --------------------------------------> read X, Y reveals error
7: Y = 2 atomic {
8: } // end atomic Z = 0
9: --------------------------------------> Rollback atomicity fails here
10: atomic {
11: X = 0
12: Y = 0
13: } // end atomic
14: } // end atomic

Fig. 6. Demonstrating added observability provided by rollback atomicity

Rollback Atomicity 195

is too restrictive. As explained in Section 2.1, in the example in Figure 2 view
serializability is unnecessarily restrictive.

To see where view serializability is too permissive, consider the example σconc

of a concurrent execution (Figure 6). At step 6 in the execution, the first atomic
block in thread T2 has completed its execution but the values of X and Y are
not consistent with any serial execution. This is undesirable because, in another
execution, actions by another thread could have been interleaved at this point
and these actions could have observed these inconsistent values of X and Y. View
serializability and commit atomicity (discussed in more detail below) are not
able to detect this error. Because there are no reads in this execution, the view
serializability requirement amounts to the final writes to each variable in a serial
execution σser being the same as the ones (X = 0, Y = 0) in Figure 6.

This example illustrates the fact that view serializability of a single execution
may not provide enough observation points along the execution to reveal bugs.
Requiring that all executions of a concurrent program be view serializable does
not suffer from this observability limitation, but, for a single execution, view
serializability may miss some obvious errors.

Purity[3] can be seen as a way of relaxing the requirements of reduction by (i)
disregarding accesses by normally-terminating pure blocks and, in essence, al-
lowing them to commute with all other accesses, (ii) allowing one to reason about
the atomicity of a more abstract version of the program in which reads within
normally-terminating pure blocks can return non-deterministic values, and (iii)
disregarding accesses to “unstable variables” such as performance counters which
do not factor into the correctness requirement for the program and which may
have races on them. If purity is used, the programmer, while performing se-
quential reasoning within an atomic block, must argue the correctness of a more
abstract program where pure reads and accesses to unstable variables may return
non-deterministic values. In the example in Figure 2, although it is not required
for correctness for updates to Msg.KBSentThisSec to be atomic with the rest
of the shared variables, the program will not work as intended for completely
arbitrary values of Msg.KBSentThisSec. Therefore, making Msg.KBSentThisSec
an unstable variable and marking the atomic block in Figure 2 will not give the
desired semantics. The requirements on Msg.KBSentThisSec are more stringent
than those on unstable variables.

Harris et al. [5] propose abstract nested transactions (ANT) as a mechanism
to recover at runtime from a subset of benign conflicts between atomic blocks.
ANT’s still implement serializability but provide a mechanism for trying more
than one witness serialization σser . Furthermore, for the ANT recovery mecha-
nism to be valid, the user is required to access each shared variable either only
within or only outside an ANT. Therefore, even when ANT’s are used, the ex-
ample in Figure 2 would create a conflict that the runtime system cannot recover
from.

In commit atomicity[4], the final state of a concurrent execution is required
to match that of an execution in which atomic blocks are run one at a time, in
the order of the occurrence of their commit points in the concurrent execution.

196 S. Tasiran and T. Elmas

Commit atomicity comes closest to the definition of atomicity proposed in this
paper, however, it is too restrictive since it requires that the entire program states
match at the end of the execution (which would include Msg.KBytesSentThisSec
in the example in Figure 2.). Also, commit atomicity requires that a commit point
(a program location) for each atomic block be determined and marked explicitly
by the programmer. Rollback atomicity does not have this requirement.

All atomicity criteria discussed in this paper, including rollback atomicity,
require the existence of a single σser in which all the actions of every atomic block
in the concurrent execution σconc occur consecutively. This has the important
benefit that the programmer can reason about his program (or at least a well-
defined subset of variables) as if each atomic block is executed sequentially and by
considering thread interleavings only at the atomic block level. Causal atomicity,
introduced in [1], is different in that, for a given concurrent execution σconc, it is
not necessary to find a single execution σser . Instead, to show causal atomicity
for a given σconc , it suffices to produce a separate witness execution σconc

A for
each atomic block A. We believe this makes causal atomicity too relaxed a non-
interference criterion and difficult to use as a programming abstraction.

In the next section, rollback atomicity is formulated as a special case of view
refinement [13]. This formulation makes clear that rollback atomicity, in a way
similar to linearizability [6] and commit-atomicity [4], does not require the serial
execution to be obtained by commuting actions of the concurrent execution.

3 Rollback Atomicity

3.1 Preliminaries

We focus on well-synchronized Java programs whose executions are free of race
conditions and thus sequentially consistent. In our model of programs and exe-
cutions, Tid represents the set of thread identifiers and Addr represents the set
of object identifiers. Objects created during executions of a Java program have a
unique identifier from the set Addr . Each object has a finite collection of fields.
Field represents the set of all fields. A variable is a pair (o, f) consisting of an
object o and a field f . V denotes the set of variables. Each thread executes a
sequence of actions. An execution of a program is a linearly-ordered finite se-
quence of actions obtained by interleaving the sequences of actions from each
thread. Actions read(o, f) and write(o, f) represent a read of and a write to the
field f of an object o respectively.

We suppose that the programmer has annotated certain code blocks as atomic.
We make the assumption of strong atomicity, where each action executed outside
an atomic block is interpreted to be an atomic block consisting of a single action.
We partition the set of variables V into the sets of focus and peripheral variables:
F ∪ P . In our implementation described in Section 5 this is accomplished by
annotating field definitions of a class with the comments @Focus or @Peripheral.
All variables (o, f) where f is a field marked @Focus are in the set F . The rest
of the variables are peripheral variables, i.e., in P .

Rollback Atomicity 197

Consider a concurrent execution σconc of a program with a set of atomic
code blocks AtBlk . We give every execution of an atomic block that occurs in
σconc a unique identifier from the set XId . Rollback atomicity of σconc requires
the existence of a serial execution corresponding to σconc and satisfying certain
conditions. In order to make these conditions precise, we make use of the commit
order and the rollback function, explained below.

The commit order on XId is a total order defined as follows: α ≤cmt β iff α = β
or the atomic block execution with the identifier α occurs before β in σser . The
commit order is uniquely determined by σser . We omit a reference to σser while
referring to the commit order in order to keep the notation simple when the
serial execution σser is clear from the context. If α ≤cmt β, we informally say
that α commits before β and β commits after α.

The rollback function RlBk is defined for certain states along a concurrent
execution – those reached right after an atomic block with identifier α performs
its last write to a focus variable. Roughly speaking, RlBk has the effect of undoing
actions by other atomic blocks that overlap with atomic block α in the concurrent
execution but come after α in the commit order. RlBk is formally defined as
follows. Let σconc

α be the state in σconc right after the atomic block execution
with identifier α has performed the last write access to a variable in F . We
denote with sconc

α = proj(σconc
α ,F) be the projection of the state σconc

α onto the
focus variables. Let σser be the serial execution on which ≤cmt is defined. Then,
for every focus variable (o, d), RlBk(sconc

α , σconc , σser ,F)((o, d)) is the value of
the last write in σconc by an atomic block β such that β ≤cmt α or the initial
value of (o, d) if no such α exists. Note that if α has performed the last write to
(o, d) before s, then RlBk(sconc

α , σconc , σser ,F)((o, d)) simply returns this value.
Rollback atomicity makes use of the rollback function to formulate a refinement
check associated with each atomic block and to ensure that the writes to each
focus variable (o, d) occur in σconc occur in the commit order.

3.2 Rollback Atomicity Definition

We say that a concurrent execution σconc is rollback atomic iff there exists an
execution σser of the program that satisfies the following conditions:

(i) For each thread t, the projection of the two executions onto t, proj(σser , t)
and proj(σconc , t), consist of the same sequence of atomic blocks. We can
therefore use the same identifier from XId to refer to corresponding occur-
rences of an atomic block execution by the same thread in σser and σconc .

(ii) Let σser
α denote the state of σser right after the block with identifier α has

completed executing. Let sserα = proj(σser
α ,F) be the projection of the state

σser
α onto the focus variables and let sconc

α be as defined above. It must be
the case that for each α, RlBk(sconc

α , σconc , σser ,F)((o, d)) = sserα ((o, d)).

Rollback atomicity is a special case of view refinement and can be seen as a
variant of linearizability [6] where part of the data structure state is projected
away. Similarly to other non-interference criteria, rollback atomicity only requires
the existence of some serial execution σser or, equivalently, a commit order. The

198 S. Tasiran and T. Elmas

next section describes how we use the dependencies between actions to infer a
commit order heuristically.

4 Checking Rollback Atomicity

We check runtime atomicity of executions by performing a view refinement check
as described in [13]. The abstraction function that realizes the rollback atomicity
check is RlBk as described above. The view refinement check requires that the
order of atomic blocks in σser be explicitly provided by the user. In order to
allow more flexibility in the choice of this order, we attempt to infer it from
causality relationships in the execution. We construct two graphs representing
causality dependencies between accesses in order to infer this order: CGF and
CGF∪P . The rules for constructing the two graphs are the same and explained
below. The former graph is constructed only using accesses to F variables while
the latter takes into account accesses to all shared variables.

A causality graph of an execution σconc is a directed graph G = (V, E) where
V contains a unique vertex for each atomic block in the execution σconc and a
unique vertex for each individual read and write action occurring in σconc. E
consists of the following edges:

(i) For each read action r and the write that it sees, W (r) (see [9] for a formal
definition), E contains an edge (W (r), r) from the node representing W (r)
to the node representing r. If W (r) (alternatively, r) is part of atomic
block with identifier α then the edge starts (alternatively, ends) at the
node representing the atomic block α instead. The case when both W (r)
and r are in the same atomic block is handled in (iii) below.

(ii) For each read action r and the next write action w to the same variable
after r in the concurrent execution σconc , E contains an edge (r, w) from
the node representing r to the node representing w. If r (or w) is part of an
atomic block α, the edge starts (or ends) at the node representing atomic
block α. The case when both W (r) and r are in the same atomic block is
handled below.

(iii) If an atomic block contains a write w to a variable (o, d) and subsequent
reads r1, r2, ..., rk of (o, d) with no write to (o, d) in the atomic block
between w and r1, ..., rk, E contains the edges (w, r1), (w, r2), ...,(w, rk).

(iv) For each pair of nodes α and β representing actions or atomic blocks ordered
by program order, E contains an edge from α to β.

We incrementally update CGF and CGF∪P as each access in the execution
σconc is processed in order. We search for cycles in each graph after adding an
edge that starts/ends at a node representing an atomic block [11]. At each such
point, there are three possibilities:

(i) Neither CGF nor CGF∪P have a cycle containing an atomic block. In this
case, we obtain a commit order of atomic blocks by applying the algorithm in
[11] to CGF∪P . In this case the entire execution up to this point is conflict-
serializable and it is not necessary to perform a rollback atomicity check.

Rollback Atomicity 199

(ii) CGF∪P has a cycle containing an atomic block but CGF does not. In this
case, we obtain a commit order by linearizing CGF only.

(iii) CGF and CGF∪P both have cycles. In this case, we take as the commit
order the order of the last focus variable writes by atomic blocks.

When the refinement check fails, this means we were not able to obtain a
serialized execution satisfying the requirements of rollback atomicity using the
commit orders provided by (i)-(iii) above. In this case, the implementation could
truly have undesired behavior, or it could be the case that we were not able to
find the right commit order. If the latter is the case, however, the commit order
conflicts with some causality dependencies between atomic blocks created by
reads and writes to focus variables. In this case, the programmer can aid our
atomicity check by explicitly providing commit point annotations which may
produce a commit order that conflicts with the dependencies captured in the
causality graphs above. The programmer may also want to revise the partition
of variables into focus and peripheral variables.

If there is a read action r to which there is more than one causality edge
from write actions in CGF , a warning is declared. This warning corresponds to
a case where a read in an atomic block should have seen a write within the same
atomic block, but, instead, has seen another write from another atomic block.
While this does not necessarily correspond to a rollback atomicity violation (e.g.
the two writes may have written the same value), we point this case out to the
programmer as it is probably unintended. Programmers declare blocks atomic
in order to be able to perform sequential reasoning. The sequential reasoning is
limited to focus variables in the case of rollback atomicity. The scenario described
corresponds to a case where this sequential assumption is broken.

5 The Implementation

The runtime algorithm for checking rollback atomicity described in the previous
section was implemented using the infrastructure built for the VYRD tool [13]
which makes use of Java Pathfinder [7]. The block diagram depicting the refine-
ment checking approach is reproduced in Figure 7. While the program runs and
produces σconc , VYRD tracks the atomic blocks and accesses to the shared vari-
ables by these blocks throughout the execution. The beginning and the end of
the atomic blocks are annotated by the method calls Vyrd.beginAtomicBlock()
and Vyrd.endAtomicBlock().

VYRD writes all the events during an execution (including instruction execu-
tion, object/thread creation and destruction) into a log file. In offline mode, after
the execution completes, VYRD replays the execution using the log and detects
the accesses to the focus variables and peripheral variables. The configuration
file for VYRD includes the annotations for the focus variables.

Our current implementation only constructs the graph CGF and computes a
commit order corresponding to the order of the last writes to focus variables by

200 S. Tasiran and T. Elmas

Replay
Mechanism

Impl

Implreplay Spec

conc

C
al

lI
n

se
rt

(3
)

U
n

lo
ck

A
[0

]

A
[0

].
el

t=
3

C
al

lL
oo

kU
p(

3)

R
et

ur
n“

su
cc

es
s”

U
n

lo
ck

A
[1

]

A
[1

].
el

t=
4

R
et

ur
n“

su
cc

es
s”

re
ad

A
[0

]

R
et

ur
n

“t
ru

e”

A
[0

].
el

t=
n

u
ll

U
n

lo
ck

A
[0

]

R
et

ur
n“

su
cc

es
s”

C
al

lI
n

se
rt

(4
)

C
al

lD
el

et
e(

3)

Multi-threaded test

Refinement
Checker

......

Write to log

Read from log

Execute logged
actions

Run methods
atomically

ser

Fig. 7. Checking refinement using VYRD

atomic blocks. For atomic blocks that access no focus variables, their place in
the commit order is chosen simply based on their order of occurrence in σconc .
In addition, VYRD allows programmers to explicitly annotate commit points of
atomic blocks by calling the special method Vyrd.commit() in the code. Using
either method, VYRD is able to identify the commit point of the atomic block
and perform the refinement check while replaying the execution from the log
file. During the replay of the concurrent execution, on a separate instance of the
program being verified, atomic blocks in the corresponding sequential execution
are executed in the commit order. sserα is computed on this separate copy.

VYRD provides a modular mechanism by which a separate software module
observes log entries, computes a commit order and drives the execution of atomic
blocks in σser . Algorithms for incremental construction of and cycle detection for
CGF and CGF∪P will be a part of this external module that feeds the inferred
commit order to VYRD. We have not implemented this feature yet.

Using the implementation outlined above, we were able to compute a commit
order and verify rollback atomicity for the motivating example in Figure 2 for
10 concurrent threads and message lengths of 50.

6 Conclusion

We proposed rollback atomicity, a new notion of atomicity that we believe is a
useful and natural non-interference criterion. We presented a runtime algorithm
for checking rollback atomicity and reported on a preliminary implementation.
Future work includes integrating cycle detection and the refinement checking
implementation, trying other heuristics for inferring the commit order, and re-
laxing the strong atomicity assumption in the rollback atomicity definition in
order to allow less stringent requirements on code blocks not marked atomic.

Rollback Atomicity 201

References

1. Farzan, A., Madhusudan, P.: Causal Atomicity. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 315–328. Springer, Heidelberg (2006)

2. Flanagan, C., Freund, S.N.: Atomizer: A Dynamic Atomicity Checker for Multi-
threaded Programs. In: Proc. 31st ACM Symposium on Principles of Programming
Languages, pp. 256–267 (2004)

3. Flanagan, C., Freund, S., Qadeer, S.: Exploiting Purity for Atomicity. In: Proc.
the Intl. Symposium on Software Testing and Analysis (ISSTA 2004), ACM Press,
New York (2004)

4. Flanagan, C.: Verifying Commit-Atomicity Using Model Checking. In: Graf, S.,
Mounier, L. (eds.) Model Checking Software. LNCS, vol. 2989, pp. 252–266.
Springer, Heidelberg (2004)

5. Harris, T., Stipic, S.: Abstract Nested Transactions. In: The 2nd ACM SIGPLAN
Workshop on Transactional Computing, TRANSACT 2007, available at
http://www.cs.rochester.edu/meetings/TRANSACT07/papers/harris.pdf

6. Herlihy, M.P., Wing, J.M.: Linearizability: A Correctness Condition for Concurrent
Objects. ACM Trans. on Programming Languages and Systems 12(3), 463–492
(1990)

7. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model Checking Programs.
Automated Software Engineering Journal 10(2) (April 2003)

8. Larus, J.R., Rajwar, R.: Transactional Memory. Morgan & Claypool (2006)
9. Manson, J., Pugh, W., Adve, S.: The Java Memory Model. In: Proc. POPL 2005.

Principles of Programming Languages, pp. 378–391. ACM Press, New York (2005)
10. Papadimitriou, C.: The Serializability of Concurrent Database Updates. Journal

of the ACM 26(4), 631–653 (1979)
11. Pearce, D.J., Kelly, P.H., Hankin, C.: Online Cycle Detection and Difference Prop-

agation: Applications to Pointer Analysis. Software Quality Control 12(4), 311–337
(2004)

12. Wang, L., Stoller, S.D.: Accurate and Efficient Runtime Detection of Atomicity
Errors in Concurrent Programs. In: PPoPP 2006: Proc. of the 11th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming, pp. 137–
146 (2006)

13. Elmas, T., Tasiran, S., Qadeer, S.: Vyrd: Verifying Concurrent Programs by Run-
time Refinement-Violation detection. In: PLDI 2005: Proc. 2005 ACM SIGPLAN
Conf. on Programming Language Design and Implementation, pp. 27–37 (2005)

http://www.cs.rochester.edu/meetings/TRANSACT07/papers/harris.pdf

Runtime Checking for Program Verification

Karen Zee1, Viktor Kuncak2, Michael Taylor3, and Martin Rinard1

1 MIT Computer Science and Artificial Intelligence Laboratory; Cambridge, USA
2 École Polytechnique Fédérale de Lausanne; Lausanne, Switzerland

3 University of California, San Diego; La Jolla, USA
{kkz,rinard}@csail.mit.edu, mbtaylor@ucsd.edu, viktor.kuncak@epfl.ch

Abstract. The process of verifying that a program conforms to its spec-
ification is often hampered by errors in both the program and the spec-
ification. A runtime checker that can evaluate formal specifications can
be useful for quickly identifying such errors. This paper describes our
preliminary experience with incorporating run-time checking into the
Jahob verification system and discusses some lessons we learned in this
process. One of the challenges in building a runtime checker for a pro-
gram verification system is that the language of invariants and assertions
is designed for simplicity of semantics and tractability of proofs, and not
for run-time checking. Some of the more challenging constructs include
existential and universal quantification, set comprehension, specification
variables, and formulas that refer to past program states. In this paper,
we describe how we handle these constructs in our runtime checker, and
describe directions for future work.

1 Introduction

This paper explores the use of a run-time checker in a program verification
system Jahob [29]. Our program verification system can prove that the speci-
fied program properties hold in all program executions. The system attempts to
prove properties using loop invariant inference algorithms [42], decision proce-
dures [30], and theorem provers [8]. As in many other static analysis systems
[3, 14] this process has the property that if a correctness proof is found, then
the desired property of the program holds in all executions. However, if a proof
is not found, this could be either because the property does not hold (there is
an error in specification or code), or because the example triggered a limita-
tion of the static verification system (for example, imprecision of loop invariant
inference, or limitation of the theorem proving engines). In contrast, run-time
checking [11, 12, 13] compiles specifications into executable code and executes
the specifications while the program is running. Although run-time checking
alone cannot guarantee the absence of errors, it can identify concrete executions
when errors do appear. Run-time checking is therefore complementary to static
verification. Run-time checking is especially useful when developing the code and
specifications, when the specifications and code are likely to contain errors due
to developer’s errors in formalizing the desired properties.

O. Sokolsky and S. Tasiran (Eds.): RV 2007, LNCS 4839, pp. 202–213, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Runtime Checking for Program Verification 203

Combining static and run-time checking. Given the complementary nature of
these techniques, recent verification systems for expressive properties such as
Spec# [3] and JML tools [14, 33] include both a static verifier and a run-time
checker that can operated on same annotated source code. However, these sys-
tems use different semantics and apply different restrictions on specifications in
these two cases. The reason is that the limitations of these two checking technolo-
gies are different: some specification constructs are easy to execute but difficult
to check statically (e.g., recursive or looping deterministic code or complex arith-
metic computations), whereas others can be checked statically but are difficult
or impossible to execute (e.g., quantification or comprehensions over unbounded
number of objects, specifications that involve mathematical quantities not rep-
resentable at run time). In practice, however, most properties we encountered
are executable if stated in an appropriate way. Note that the same specification
would be written differently depending on whether it is meant to be executed
or verified statically: compare for example 1) specifications of linked structures
in systems such as Jahob [29], which use treeness annotations, mathematical
sets, relations, and transitive closure operators with 2) manually written Java
methods in systems for constraint solving over imperative predicates [9], which
use deterministic worklist algorithms with loops to check the shape of the data
structure.

Executing declarative specifications. The goal to perform both static and run-
time checking can serve as the guidance in designing the specification language.
We believe that specification languages, even if their goal is to be executable,
should remain declarative in the spirit. In this paper we therefore start with
Jahob’s language, which was designed for static analysis in mind, and explore
techniques necessary to verify Jahob’s specifications at run-time. To assess some
of these techniques we built an interpreter that executes both the abstract syntax
trees of the analyzed program and the specifications in program annotations. The
primary use of the run-time checker is debugging specifications and the program.
In addition to verification, this research can also be viewed as contributing to
the long-standing problem of executing expressive declarative languages.

Contributions. This paper outlines the challenges in executing specification lan-
guage designed for static verification, describes the current state of our run-time
checker for Jahob, and presents future directions. Our checker can execute spec-
ifications that involve quantifiers, set comprehensions, transitive closure, integer
and object expressions, sets, and relations. Unlike the run-time checkers that we
know of, it can evaluate certain expressions that denote infinite sets, as well as
formulas that refer to old values of fields of an unbounded number of objects.
Among the main future directions are the development of techniques for com-
pilation, parallelization, and incremental evaluation of run-time checks, and the
use of constraint solvers for modular run-time checking.

204 K. Zee et al.

1 class Node { public /∗: claimedby DLL ∗/ Node next, prev; }
2 class DLL {
3 private static Node root;
4 /∗: public static specvar content :: ”obj set”;
5 vardefs ”content == {x. (root,x) ∈ {(u,v). next u = v}ˆ∗ ∧ x �= null}”;
6 invariant backbone: ”tree[next]”;
7 invariant rootFirst: ”root = null ∨ (∀ n. n..next �= root)”;
8 invariant noNextOutside: ”∀ x y. x �= null ∧ y �= null ∧ x..next = y
9 → y : content”;

10 invariant prevDef: ”∀ x y. prev x = y →
11 (x �= null ∧ (∃ z. next z = x) → next y = x) ∧
12 (((∀ z. next z �= x) ∨ x = null) → y = null)”;
13 ∗/
14 public static void addLast(Node n)
15 /∗: requires ”n /∈ content ∧ n �= null”
16 modifies content
17 ensures ”content = old content ∪ {n}” ∗/
18 {
19 if (root == null) {
20 root = n;
21 n.next = null; n.prev = null;
22 return;
23 }
24 Node r = root;
25 while (r.next != null) {
26 r = r.next;
27 }
28 r .next = n;
29 n.prev = r;
30 }
31 public static void testDriver()
32 /∗: requires ”content = {}” ∗/
33 {
34 Node n1 = new Node();
35 addLast(n1);
36 Node n2 = new Node();
37 addLast(n2);
38 }
39 }

Fig. 1. Doubly-linked list with one operation specified in Jahob

2 Jahob Verification System

Jahob [29] is a program verification system for a subset of Java. The initial focus
of Jahob is data structure verification [8, 29, 30, 31, 32, 42, 43] for which a simple
memory-safe imperative subset of Java [29, Section 3.1] is sufficient.

Figure 1 shows a fragment of a doubly-linked list implementation in Jahob,
with the addLast operation that inserts a given node at the end of the list. De-
velopers write Jahob specifications in the source code as special comments that
start with the “:” sign. Developers can therefore compile and run programs using

Runtime Checking for Program Verification 205

standard Java interpreters and runtimes. Jahob specifications contain formulas
in higher-order logic (HOL), expressed in the syntax of the Isabelle interactive
theorem prover [35]. The specifications represent a class field f as total function
f mapping all objects to values, with the convention that fnull = null and also
fx = null when x.f is not well-typed in Java. Jahob specifications include dec-
larations and definitions of specification variables (such as content in Figure 1),
data structure invariants (such as backbone, rootFirst, noNextOutside, and pre-
vDef), and procedure contracts consisting of preconditions (“requires” clauses),
postconditions (“ensures” clauses) and frame conditions (“modifies” clauses).
The contract for addLast specifies that the procedure 1) requires its parameter
n to be outside the list content, 2) modifies the list content, and 3) inserts n into
the list (and does not insert or delete any other elements). Specification variables
such as content are abstract fields defined by the programmer for the purpose
of specification and may contain a definition given after the vardefs keyword,
which specifies an abstraction function. The content variable has the type of a
set of object identities and is given by a set comprehension that first constructs
a binary relation between objects and their next successors, then computes its
transitive closure using the higher-order * operator on relations, and finally uses
it to find all elements reachable from root.

Given the class invariants in Figure 1, Jahob invokes its inference engine
Bohne [42, 43], which succeeds in automatically computing a loop invariant,
proving that the postcondition of addLast holds, and proving that there are no
run-time errors during procedure execution. In this case Bohne uses the MONA
decision procedure for monadic second-order logic of trees [27], but in other
cases it uses resolution-based provers [38], satisfiability-modulo theory provers
[4], new decision procedures [30], or combinations of these approaches. In general,
a successful verification means that the desired property holds, but a failed
verification can also occur either due to an error in program or specification or
due to a limitation of Jahob’s static analysis techniques.

3 Debugging Annotated Code Using Run-Time Checking

For a successful verification of such detailed properties as in the example in Fig-
ure 1, the developer must come up with appropriate class invariants. A run-time
checker can help in this process. For example, when we were writing this exam-
ple, we initially wrote the following prevDef0 version of prevDef invariant:
1 invariant prevDef0: ”∀ x y. prev x = y → (x �= null → next y = x)”

This formula is reasonably-looking at first sight. Moreover, modular static verifi-
cation quickly succeeds in proving that if addLast satisfies the invariants initially,
it preserves the invariants and establishes the postconditions. Unfortunately, the
prevDef invariant is false whenever there is a non-null object whose prev field
points to null, so, even if true in the very first initial state, it is not preserved
by allocation operations outside the DLL class.

Executing our run-time checker on the testDriver procedure in Figure 1 im-
mediately detects that the prevDef0 invariant is violated when the execution

206 K. Zee et al.

enters addLast. As another illustration, suppose that we write a correct invariant
prevDef but we omit in Figure 1 line 29 containing the assignment n.prev=r.
Running the run-time checker on the same testDriver procedure identifies the
invariant violation at the exit of addLast procedure. Compared to constraint
solving techniques that could potentially detect such situation the advantage
of run-time checking is that it directly confirms that a specific program frag-
ment violates an invariant, it is applicable to constraints for which no decision
procedures exist, and it can handle code execution with any number of loop
iterations.

4 The Scope of Our Run-Time Checker

Our run-time checker verifies that program states occurring in a given execution
satisfy the desired safety properties. These safety properties refer either to a
specific program state (for example, the program point at which the assertion
is written), or to a relationship between the current program state and a past
state identified by a program point (such as program state at a procedure entry).
As a result, if we assumed that each program state itself is finite, such run-time
checking problem would reduce to the problem of evaluating a formula in a given
finite model. This problem has been studied from the viewpoint of finite model
theory [16, 22] where it was related to computational complexity classes, in re-
lational databases [20, 36, 37] where the database takes place of program state,
in model checking [7, 25], with techniques based on BDDs, and in constraint
solving [23, 41]. While these ideas are relevant for our work, there are several
challenges that arise when considering run-time checking based on our specifi-
cation language: quantification over infinite or large domains, representation of
specification variables that denote infinite sets, and computation of values that
relate to previous program states. Although we cannot hope to support all these
constructs in their most general form, we have identified their uses in the exam-
ples we encountered so far and we describe how we support these uses in our
run-time checker.

5 Quantifiers and Set Comprehensions

Quantifiers and set comprehensions are a great source of expressive power for a
specification language. They are essential for stating that a group of objects in
a data structure satisfies the desired properties, for example, being non-null or
initialized. The advantages of using quantifiers as opposed to using imperative
constructs such as loops to express the desired properties is that quantifiers
enjoy a number of well-understood mathematical properties, which makes them
appropriate for manual and automated proofs. On the other hand, quantifiers
are one of the main sources of difficulty in run-time checking.

Restriction to first-order quantifiers. Jahob’s specifications are written in higher-
order logic, which admits quantification over sets of objects. This allows express-
ing properties like minimum spanning tree or graph isomorphism. Most of our

Runtime Checking for Program Verification 207

data structure specification examples, however, we do not encounter higher-order
quantification (even though there are 120 classes that contain first-order quan-
tification). One of the reasons is that higher-order quantification is difficult to
reason about statically, so our examples avoid it. Our run-time checker therefore
currently supports only first-order quantifiers. The quantified variables are either
of integer or of object type. We note that the run-time checker does support some
simple uses of higher-order functions, which it eliminates by beta-reduction.

Bounding integer quantifiers. Integers in Jahob denote unbounded mathematical
integers. We encounter quantification over integers, for example, when reasoning
about indices of arrays. Such quantifiers and set comprehensions are usually
bounded, as in the form ∀x.0 ≤ x∧x < n → . . . or {v.∃i. 0 ≤ i∧i < n∧v = a.[i]}.
We support such examples by syntactically identifying within the quantifier body
the expressions that enforce bounds on integers. We use these bounds to reduce
quantifiers to finite iteration over a range of integers.

Bounding object quantifiers. Our interpreter implicitly assumes that object
quantifiers range only over allocated objects. While this is a very natural as-
sumption, note that this in fact departs from the static analysis semantics of
quantifiers in Jahob as well as systems such as ESC/Java [18] and Spec# [3].
The reason is that object allocation produces fresh objects with respect to all
currently allocated objects, and the set of allocated objects changes with each
allocation. A typical approach to soundly model allocation is to introduce a set
of currently allocated objects, denoted Object.alloc in Jahob, and keep the
domain of interpretation fixed. A statement such as x = new Node() is then
represented by

1 assume x /∈ Object.alloc;
2 Object.alloc := Object.alloc ∪ {x};

The change of the set of allocated objects ensures that allocated objects are fresh,
which is a crucial piece of aliasing information necessary to verify code that uses
linked structures. With this technique, it is possible to use standard verification
condition generation techniques to correctly represent state changes. On the
other hand, in this model all objects that will ever be used exist at all program
points, even before they are allocated. To execute an arbitrary quantification of
objects at run-time, it is necessary to combine run-time evaluation of formula
over allocated objects with symbolic techniques that determine the truth value
for all objects that are not allocated. The last step is possible in many cases
because objects that are not allocated are all isomorphic: they have no incoming
and no outgoing fields.

Propagating variable dependencies in multiple quantified statements. Even
bounded domains, however, may be large, and we would like to avoid considering
all objects in the heap if at all possible. Consider the following formula:

∀x.∀y. x ∈ Object.alloc∧ y ∈ Object.alloc∧ nextx = y −→ P (x, y)

208 K. Zee et al.

In a naive implementation, the run-time checker would iterate over the set of all
allocated objects for both of the universal quantifiers, an O(n2) operation. But
in the above formula, the quantified variable y is introduced for the purposes
of naming and can be easily evaluated without enumerating all elements of the
heap. The runtime checker handles these cases by doing a simple syntactic check
in the body of quantified formula to determine if the bound variable is defined by
an equality. If it finds an appropriate definition, the run-time checker evaluates
the body of the formula without having to enumerate a large number of objects.
For example, when computing a set comprehension over all allocated objects, we
could straightforwardly compute the elements of the set by evaluating the body
of the formula for each element in the domain. But since this is very inefficient,
the runtime checker first searches through the body of the formula to determine
if the bound variable is defined by an equality. This is often the case, for example,
when the set comprehension is expressed in terms of the reachable objects from
some root using reflexive transitive closure. In this case, we can compute the
elements of the set without having to enumerate all objects within the domain.

6 Specification Variables

Specification variables are useful for representing the abstract view of the state
of a class. The developers can use specification variables to specify the behavior
of abstract data types without exposing implementation details. Jahob supports
two types of specification variables: derived specification variables and ghost
variables. These are sometimes referred to as model fields and ghost fields, re-
spectively, as in JML [33].

Ghost variables. A ghost variable is updated by the developer by assigning it
values given by HOL formulas using special specification assignment statements
in the code. Our run-time checker treats ghost variables similarly to ordinary
Java variables. The difference is that, in addition to standard program types
such as booleans, integers, and objects, these variables can also have types of
tuples and sets of elements and tuples.

When a ghost variable is updated, the right-hand side of the assignment state-
ment consists of a formula that the runtime checker evaluates to produce the new
value of the ghost variable. It then stores the resulting value in the same way as it
would for the assignment of a normal program variable. This formula is a standard
Jahob formula and may contain quantifiers, set comprehensions, set operations,
and other constructs not typically available in Java assignment statements.

The run-time checker supports certain forms of infinite sets. For example, the
checker can evaluation the following code:

1 //: private ghost specvar X :: ”int set”;
2 int y = 0;
3 //: X := {z. z > 0};
4 //: assert y /∈ X;
5 y = y + 1;
6 //: assert y ∈ X;

Runtime Checking for Program Verification 209

where the ghost variable X is assigned the value of an unbounded set. The runtime
checker handles such cases by deferring the evaluation of X until it reaches the
assert statements. It then applies formula simplifications that eliminate the set
comprehension. This is a particular case of a more general approach where some
elements of theorem proving could be applied at run-time [2].

Derived variables. A derived specification variable (such as content in Figure 1)
is given by a formula that defines it in terms of the concrete state of the program.
When the runtime checker evaluates a formula that refers to a standard speci-
fication variable, it evaluates the formula that defines the specification variable
in the context of the current program state.

7 The old Construct

In Jahob, an old expression refers to the value of the enclosed expression as
evaluated on entry to the current procedure and is very useful to express state
changes that procedures perform. One simple but inefficient method of providing
the checker access to past program state would be to snapshot the heap before
each procedure invocation. Unfortunately, this approach is unlikely to be prac-
tical because the memory overhead would be a product of the size of the heap
and the depth of the call stack. Instead, our run-time checker obtains access to
the pre-state by means of a recovery cache (also known as a recursive cache) [21]
that keeps track of the original values of modified heap locations. There are
several features of this solution. First, it takes advantage of the fact that we
need only know the state of the heap on procedure entry, and not the state of
any intermediate heaps between procedure entry and the assertion or invariant
to be evaluated. Also, where the state of a variable is unchanged, the old value
resides in the heap, so that reads do not incur a performance penalty excepting
reads of old values. Finally, one of the ideas underlying this solution is that we
expect the amount of memory required to keep track of the initial writes to be
small relative to the size of the heap. While there is a trade-off between mem-
ory and performance—there is now a performance penalty for each write—the
overhead is greatest for initial writes, and less for subsequent writes to the same
location.

8 Further Related Work

Run-time assertion checking has a long history [13]. Among the closest systems
for run-time checking in the context of static verification system are tools based
on the Java Modeling Language (JML) and the Spec# system [3]. The JML
compiler, jmlc [12] compiles JML-annotated Java programs into bytecode that
also includes instructions for checking JML invariants, pre- and post-conditions,
and assertions. Other assertion tools for JML include Jass [5] and jmle [28].
One of the goals in the design of JML was to produce a specification language
that was Java-like, to make it easier for software engineers to write JML spec-
ifications. It also makes JML specifications easier to execute. Jahob, on the

210 K. Zee et al.

other hand, was designed as a static verification system and uses an expres-
sive logic as its specification language. The advantage of this design is that
the semantics of the specifications is clear, and the verification conditions gen-
erated by the system can easily be traced back to the relevant portions of
the specification, which is very helpful in the proof process. One example of
this difference in philosophy appears in the treatment of old expressions. In
JML, an old expression may not contain a variable that is bound by a quan-
tifier outside of that expression. This restriction ensures that the body of the
old expression can be fully evaluated at the program point to which the old
expression refers, but prevents writing certain natural specifications such as
∀i.0 ≤ i ∧ i < a.length → a[i] = (old a[i]).

We are not aware of any techniques used to execute such specifications as
in Jahob in the context of programming language run-time checking systems.
Techniques for checking constraints on databases [6, 19, 20, 24, 36, 37] contain
relevant techniques, but use simpler specification specification languages and are
optimized for particular classes of checks.

While run-time assertion checking systems concern themselves with checking
properties of the heap, event-based systems [1, 34, 40] are concerned with check-
ing properties of the trace. Quantification is implicit over all events that adhere
to the pattern described by the specification. The matching of an event binds the
free variables in the specification to specific objects in the heap. Since explicit
quantifiers are generally not available in the specification language of event-based
systems, the properties encoded can only refer to a statically-determined num-
ber of objects in the heap for each event instance, though the number of event
instances matched is unbounded.

9 Conclusions and Future Work

We have described a simple run-time checker for a subset of an expressive higher-
order logic assertions in the Jahob verification system. Our run-time checker can
execute specifications that involve quantifiers, set comprehensions, transitive clo-
sure, integer and object expressions, sets, and relations. It can evaluate certain
expressions that denote infinite sets, as well as formulas that refer to old values
of fields of an unbounded number of objects. We have found the run-time checker
useful for debugging specifications and code. The run-time checker is currently
built as an interpreter and in our examples it exhibits slowdown of several orders
of magnitude compared to compiled Java code without run-time checks, and is
meant for debugging and analysis purposes as opposed to the instrumentation
of large programs. Among the main directions for future work are compilation
of run-time checks [10, 15] to enable checking of the assertions that were not
proved statically [17], memoization and incremental evaluation of checks [39],
and combination with a constraint solver to enable modular run-time checking
[26].

Runtime Checking for Program Verification 211

References

1. Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhotak,
O., de Moor, O., Sereni, D., Sittampalam, G., Tibble, J.: Adding trace matching
with free variables to AspectJ. In: Proc. 20th Annual ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applications, pp. 345–364 (2005)

2. Arkoudas, K., Rinard, M.: Deductive runtime certification. In: RV 2004. Proceed-
ings of the 2004 Workshop on Runtime Verification, Barcelona, Spain (April 2004)

3. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: An
overview. In: CASSIS: Int. Workshop on Construction and Analysis of Safe, Secure
and Interoperable Smart devices (2004)

4. Barrett, C., Berezin, S.: CVC Lite: A new implementation of the cooperating va-
lidity checker. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp.
515–518. Springer, Heidelberg (2004)

5. Bartetzko, D., Fischer, C., Möller, M., Wehrheim, H.: Jass–Java with assertions.
In: RV 2001. ENTCS, vol. 55, pp. 103–117 (2001)

6. Bernstein, P.A., Blaustein, B.T.: Fast methods for testing quantified relational
calculus assertions. In: Proceedings of the 1982 ACM SIGMOD international con-
ference on Management of data, pp. 39–50. ACM Press, New York (1982)

7. Beyer, D., Noack, A., Lewerentz, C.: Efficient relational calculation for software
analysis. IEEE Trans. Software Eng. 31(2), 137–149 (2005)

8. Bouillaguet, C., Kuncak, V., Wies, T., Zee, K., Rinard, M.: Using first-order the-
orem provers in a data structure verification system. In: Cook, B., Podelski, A.
(eds.) VMCAI 2007. LNCS, vol. 4349, Springer, Heidelberg (2007)

9. Boyapati, C., Khurshid, S., Marinov, D.: Korat: Automated testing based on Java
predicates. In: Proc. International Symposium on Software Testing and Analysis,
pp. 123–133 (July 2002)

10. Chen, F., d’Amorim, M., Rosu, G.: Checking and correcting behaviors of java
programs at runtime with java-mop. Electr. Notes Theor. Comput. Sci. 144(4),
3–20 (2006)

11. Chen, F., Roşu, G.: MOP: An Efficient and Generic Runtime Verification Frame-
work. In: OOPSLA 2007. Object-Oriented Programming, Systems, Languages and
Applications (2007)

12. Cheon, Y.: A Runtime Assertion Checker for the Java Modeling Language. PhD
thesis, Iowa State University, April (2003)

13. Clarke, L.A., Rosenblum, D.S.: A historical perspective on runtime assertion check-
ing in software development. SIGSOFT Softw. Eng. Notes 31(3), 25–37 (2006)

14. Cok, D.R., Kiniry, J.R.: Esc/java2: Uniting ESC/Java and JML. In: CASSIS: Con-
struction and Analysis of Safe, Secure and Interoperable Smart devices (2004)

15. Demsky, B., Cadar, C., Roy, D., Rinard, M.C.: Efficient specification-assisted error
localization. In: Second International Workshop on Dynamic Analysis (2004)

16. Ebbinghaus, H.D., Flum, J.: Finite Model Theory. Springer, Heidelberg (1995)

17. Flanagan, C.: Hybrid type checking. In: POPL, pp. 245–256 (2006)

18. Flanagan, C., Leino, K.R.M., Lilibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended Static Checking for Java. In: ACM Conf. Programming Language Design
and Implementation (PLDI) (2002)

19. Griffin, T., Libkin, L., Trickey, H.: An improved algorithm for incremental recom-
putation of active relational expressions. IEEE Transactions on Knowledge and
Data Engineering 9(3), 508–511 (1997)

212 K. Zee et al.

20. Henschen, L.J., McCune, W., Naqvi, S.A.: Compiling constraint-checking programs
from first-order formulas. In: Gallaire, H., Nicolas, J.-M., Minker, J. (eds.) Ad-
vances in Data Base Theory, Proceedings of the Workshop on Logical Data Bases,
2nd edn, pp. 145–169 (1984). ISBN 0-306-41636-0.

21. Horning, J.J., Lauer, H.C., Melliar-Smith, P.M., Randell, B.: A program struc-
ture for error detection and recovery. In: Gelenbe, E., Kaiser, C. (eds.) Operating
Systems. LNCS, vol. 16, pp. 171–187. Springer, Heidelberg (1974)

22. Immerman, N.: Descriptive Complexity. Springer, Heidelberg (1998)
23. Jackson, D.: Software Abstractions: Logic, Language, & Analysis. MIT Press, Cam-

bridge (2006)
24. Jagadish, H.V., Qian, X.: Integrity maintenance in object-oriented databases. In:

Proceedings of the 18th Conference on Very Large Databases, Los Altos CA, Van-
couver, Morgan Kaufmann pubs, San Francisco (1992)

25. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic Model
Checking: 1020 States and Beyond. In: Proceedings of the Fifth Annual IEEE
Symposium on Logic in Computer Science, pp. 1–33. IEEE Computer Society
Press, Washington (1990)

26. Khurshid, S., Marinov, D.: TestEra: Specification-based testing of java programs
using SAT. Autom. Softw. Eng. 11(4), 403–434 (2004)

27. Klarlund, N., Møller, A., Schwartzbach, M.I.: MONA implementation secrets. In:
Wilhelm, R. (ed.) Proc. 5th International Conference on Implementation and Ap-
plication of Automata. LNCS, Springer, Heidelberg (2000)

28. Krause, B., Wahls, T.: jmle: A tool for executing JML specifications via constraint
programming. In: Brim, L., Haverkort, B., Leucker, M., van de Pol, J. (eds.) FMICS
2006 and PDMC 2006. LNCS, vol. 4346, pp. 293–296. Springer, Heidelberg (2007)

29. Kuncak, V.: Modular Data Structure Verification. PhD thesis, EECS Department,
Massachusetts Institute of Technology (February 2007)

30. Kuncak, V., Nguyen, H.H., Rinard, M.: Deciding Boolean Algebra with Presburger
Arithmetic. In: J. of Automated Reasoning (2006),
http://dx.doi.org/10.1007/s10817-006-9042-1.

31. Kuncak, V., Rinard, M.: An overview of the Jahob analysis system: Project goals
and current status. In: NSF Next Generation Software Workshop (2006)

32. Kuncak, V., Rinard, M.: Towards efficient satisfiability checking for boolean algebra
with presburger arithmetic. In: Conference on Automateded Deduction (CADE-21)
(2007)

33. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Müller, P.,
Kiniry, J., Chalin, P.: JML Reference Manual. February (2007)

34. Martin, M., Livshits, B., Lam, M.S.: Finding application errors and security flaws
using PQL: a Program Query Language. In: Proc. 20th Annual ACM Conference
on Object-Oriented Programming, Systems, Languages, and Applications (2005)

35. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. In: Isabelle/HOL. LNCS, vol. 2283, Springer, Heidelberg
(2002)

36. Paige, R.: Applications of finite differencing to database integrity control and
query/transaction optimization. In: Gallaire, H., Nicolas, J.-M., Minker, J. (eds.)
Advances in Data Base Theory, Proceedings of the Workshop on Logical Data
Bases, 2nd edn, pp. 171–209 (1984). ISBN 0-306-41636-0.

37. Qian, X., Wiederhold, G.: Knowledge-based integrity constraint validation. In:
Chu, W.W., Gardarin, G., Ohsuga, S., Kambayashi, Y. (eds.) VLDB 1986 Twelfth
International Conference on Very Large Data Bases, August 25-28, 1986, Kyoto,
Japan, Proceedings, pp. 3–12. Morgan Kaufmann, San Francisco (1986)

http://dx.doi.org/10.1007/s10817-006-9042-1

Runtime Checking for Program Verification 213

38. Schulz, S.: E – A Brainiac Theorem Prover. Journal of AI Communications 15(2/3),
111–126 (2002)

39. Shankar, A., Bodik, R.: Ditto: Automatic incrementalization of data structure
invariant checks. In: PLDI (2007)

40. Stolz, V., Bodden, E.: Temporal assertions using AspectJ (2005)
41. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: Grumberg, O.,

Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, Springer, Heidelberg (2007)
42. Wies, T., Kuncak, V., Lam, P., Podelski, A., Rinard, M.: Field constraint analysis.

In: Proc. Int. Conf. Verification, Model Checking, and Abstract Interpratation
(2006)

43. Wies, T., Kuncak, V., Zee, K., Podelski, A., Rinard, M.: Verifying complex prop-
erties using symbolic shape analysis. In: Workshop on Heap Abstraction and Ver-
ification (collocated with ETAPS) (2007)

Author Index

Aksit, Mehmet 38
Avgustinov, Pavel 9

Barringer, Howard 97, 111
Bauer, Andreas 126
Bergmans, Lodewijk 38
Blech, Jan Olaf 139
Bodden, Eric 22

Costanza, Pascal 51

de Moor, Oege 9
Durr, Pascal 38

Eisner, Cindy 1
Elmas, Tayfun 188
Endoh, Yusuke 87

Gabbay, Dov 97
Gallegos, Irbis 75
Gates, Ann 75
Gybels, Kris 51

Havelund, Klaus 111
Hendren, Laurie 22
Herzeel, Charlotte 51

Kataoka, Yoshio 87
Krüger, Ingolf H. 63
Kuncak, Viktor 202

Lam, Patrick 22
Lee, Insup 164

Leucker, Martin 126
Lhoták, Ondřej 22

Mahoney, William 151
Meisinger, Michael 63
Menarini, Massimiliano 63

Naeem, Nomair A. 22

Ochoa, Omar 75

Poetzsch-Heffter, Arnd 139

Regehr, John 164
Rinard, Martin 202
Roach, Steve 75
Rydeheard, David 97, 111

Sammapun, Usa 164
Schaefer, Ina 139
Schallhart, Christian 126
Shin, Hiromasa 87
Sokolsky, Oleg 164
Sousan, William 151
Stolz, Volker 176

Tasiran, Serdar 188
Taylor, Michael 202
Tibble, Julian 9

Zee, Karen 202

	Title Page
	Preface
	Organization
	Table of Contents
	PSL for Runtime Verification:Theory and Practice
	Introduction
	Masking Branching vs. Linear Time
	Finite Paths and the Truncated Semantics
	The FoCs Approach to the Ticking of Time

	On the Semantics ofMatching Trace Monitoring Patterns
	Introduction
	Trace Patterns with Free Variables
	Interpretation of Patterns
	A Simple Skipping Language
	Semantics of Lskip
	Expressiveness of Lskip
	Making Lskip More Expressive

	Definition of Symbols and Events
	Related Work
	Conclusion and Future Work

	Collaborative Runtime Verification withTracematches
	Introduction
	Background
	Shadow Partitionings
	Spatial Partitioning
	Temporal Partitioning

	Benchmarks
	Spatial Partitioning
	Temporal Partitioning

	Related Work
	Conclusion and Future Work

	Static and Dynamic Detection of BehavioralConflicts Between Aspects
	An Example Conflict: Security vs. Logging
	Approach Outlined
	Conflict Model
	Analysis Process

	Issues with Static Checking in AOP
	Dynamic Weaving
	Dynamic Advice Execution
	Concurrency

	A Runtime Extension
	Instrumentation
	Analysis Process At Runtime

	Related Work
	Conclusion

	Escaping with Future Variables in HALO
	Introduction
	HALO by Example
	The HALO Weaver
	Weaving Schema
	Matching Pointcuts

	Optimizing Memory Usage in HALO
	Escape Nodes in Memory Table Garbage Collection
	Benchmarks

	Related Work
	Conclusions and Future Work

	Runtime Verification of Interactions: FromMSCs to Aspects
	Introduction
	Problem Definition
	Contribution and Outline

	Specification of the CLS Interactions
	Generation of Aspect-Oriented Runtime Monitors
	Evaluation and Discussion
	Related Work
	Summary and Outlook

	Towards a Tool for Generating Aspects fromMEDL and PEDL Specificationsfor Runtime Verification
	Introduction
	Background
	 Java-MaC
	Property and Behavior Specifications.
	Java-Mac Instrumentation.

	Aspect-Oriented Programming
	AspectJ.

	Proposed Approach
	Description
	Example

	Related Work
	Monitoring Oriented Programming (MOP)
	TRAP/J
	Temporal Assertion Using AspectJ
	jMonitor

	Summary

	ARVE: Aspect-Oriented Runtime VerificationEnvironment
	Introduction
	Overview
	Usage
	Abstraction Layer
	Trace Checker
	Other Examples

	Details
	Optimization
	Debugger Control
	Target Abstraction

	Related Work
	Future Work
	Summary

	From Runtime Verification to Evolvable Systems
	Introduction
	Upgrading ATMs
	A Logical Framework
	States, Configurations and Revision Actions
	Meta-view Relations

	Including Programs in Component Theories
	Evolvable Component Structures
	An Operational Semantics

	Conclusions

	Rule Systems for Run-Time Monitoring:From Eagle to RuleR
	Introduction
	RuleR by Example
	Inhibiting Rule Activation

	Propositional RuleR Trace Semantics
	Propositional Linear Temporal Logic as a Rule System

	Parameterized RuleR
	Conclusions

	The Good, the Bad, and the Ugly,But How Ugly Is Ugly?
	Introduction
	LTL on Infinite Traces
	LTL on Finite Traces
	Existing Semantics for Finite Traces
	RV-LTL

	Monitors for RV-LTL
	Conclusion

	Translation Validation of System Abstractions
	Introduction
	Adaptive System Verification
	Property Preservation by Simulation
	The Translation Validation Infrastructure
	Representing Systems in Isabelle
	Formalizing Abstraction Correctness in Isabelle
	Proving Abstractions Correct

	Evaluation of Our Framework
	Related Work
	Conclusion

	Instrumentation of Open-Source Softwarefor Intrusion Detection
	Introduction
	Intrusion Detection Overview
	Basic Block Instrumentation in GCC
	The Intrusion Detection Domain Language
	Experimental Results
	Conclusions Thus Far and Future Research

	Statistical Runtime Checking ofProbabilistic Properties
	Introduction
	Background: MaC
	Probabilistic Properties
	Syntax
	Semantics
	Discussion

	Case Study: Checking Wireless Sensor Network Applications
	Identifying a Faulty Node

	Conclusions

	Temporal Assertions with ParametrisedPropositions
	Introduction
	Parametrised LTL
	Parametrised Automaton
	Example: Lock-Order Reversal

	Conclusion

	Rollback Atomicity
	Introduction
	Motivation
	Rollback Atomicity Example
	Limitations of Other Non-interference Criteria

	Rollback Atomicity
	Preliminaries
	Rollback Atomicity Definition

	Checking Rollback Atomicity
	The Implementation
	Conclusion

	Runtime Checking for Program Verification
	Introduction
	Jahob Verification System
	Debugging Annotated Code Using Run-Time Checking
	The Scope of Our Run-Time Checker
	Quantifiers and Set Comprehensions
	Specification Variables
	The old Construct
	Further Related Work
	Conclusions and Future Work

	Author Index

